Green Adrian J, Truong Lisa, Thunga Preethi, Leong Connor, Hancock Melody, Tanguay Robyn L, Reif David M
Department of Biological Sciences, NC State University, Raleigh, North Carolina, United States of America.
Bioinformatics Research Center, NC State University, Raleigh, North Carolina, United States of America.
bioRxiv. 2023 Sep 17:2023.09.13.557544. doi: 10.1101/2023.09.13.557544.
Zebrafish have become an essential tool in screening for developmental neurotoxic chemicals and their molecular targets. The success of zebrafish as a screening model is partially due to their physical characteristics including their relatively simple nervous system, rapid development, experimental tractability, and genetic diversity combined with technical advantages that allow for the generation of large amounts of high-dimensional behavioral data. These data are complex and require advanced machine learning and statistical techniques to comprehensively analyze and capture spatiotemporal responses. To accomplish this goal, we have trained semi-supervised deep autoencoders using behavior data from unexposed larval zebrafish to extract quintessential "normal" behavior. Following training, our network was evaluated using data from larvae shown to have significant changes in behavior (using a traditional statistical framework) following exposure to toxicants that include nanomaterials, aromatics, per- and polyfluoroalkyl substances (PFAS), and other environmental contaminants. Further, our model identified new chemicals (Perfluoro-n-octadecanoic acid, 8-Chloroperfluorooctylphosphonic acid, and Nonafluoropentanamide) as capable of inducing abnormal behavior at multiple chemical-concentrations pairs not captured using distance moved alone. Leveraging this deep learning model will allow for better characterization of the different exposure-induced behavioral phenotypes, facilitate improved genetic and neurobehavioral analysis in mechanistic determination studies and provide a robust framework for analyzing complex behaviors found in higher-order model systems.
斑马鱼已成为筛选发育性神经毒性化学物质及其分子靶点的重要工具。斑马鱼作为一种筛选模型取得成功,部分原因在于其身体特征,包括相对简单的神经系统、快速发育、实验易处理性以及遗传多样性,再加上技术优势,能够生成大量高维行为数据。这些数据很复杂,需要先进的机器学习和统计技术来全面分析和捕捉时空反应。为实现这一目标,我们使用未接触过的斑马鱼幼体的行为数据训练了半监督深度自动编码器,以提取典型的“正常”行为。训练后,我们使用来自幼体的数据对网络进行评估,这些幼体在接触包括纳米材料、芳烃、全氟和多氟烷基物质(PFAS)以及其他环境污染物在内的有毒物质后,行为发生了显著变化(使用传统统计框架)。此外,我们的模型识别出了新的化学物质(全氟正十八烷酸、8-氯全氟辛基膦酸和九氟戊酰胺),它们能够在多个化学浓度对下诱导异常行为,而仅使用移动距离无法捕捉到这些行为。利用这种深度学习模型将有助于更好地表征不同暴露诱导的行为表型,促进在机制确定研究中改进遗传和神经行为分析,并为分析高阶模型系统中发现的复杂行为提供一个强大的框架。