Suppr超能文献

基于深度自动编码器的行为模式识别在高维斑马鱼研究中优于标准统计方法。

Deep autoencoder-based behavioral pattern recognition outperforms standard statistical methods in high-dimensional zebrafish studies.

机构信息

Bioinformatics Research Center, Department of Biological Sciences, NC State University, Raleigh, North Carolina, United States of America.

Sciome LLC, Research Triangle Park, North Carolina, United States of America.

出版信息

PLoS Comput Biol. 2024 Sep 10;20(9):e1012423. doi: 10.1371/journal.pcbi.1012423. eCollection 2024 Sep.

Abstract

Zebrafish have become an essential model organism in screening for developmental neurotoxic chemicals and their molecular targets. The success of zebrafish as a screening model is partially due to their physical characteristics including their relatively simple nervous system, rapid development, experimental tractability, and genetic diversity combined with technical advantages that allow for the generation of large amounts of high-dimensional behavioral data. These data are complex and require advanced machine learning and statistical techniques to comprehensively analyze and capture spatiotemporal responses. To accomplish this goal, we have trained semi-supervised deep autoencoders using behavior data from unexposed larval zebrafish to extract quintessential "normal" behavior. Following training, our network was evaluated using data from larvae shown to have significant changes in behavior (using a traditional statistical framework) following exposure to toxicants that include nanomaterials, aromatics, per- and polyfluoroalkyl substances (PFAS), and other environmental contaminants. Further, our model identified new chemicals (Perfluoro-n-octadecanoic acid, 8-Chloroperfluorooctylphosphonic acid, and Nonafluoropentanamide) as capable of inducing abnormal behavior at multiple chemical-concentrations pairs not captured using distance moved alone. Leveraging this deep learning model will allow for better characterization of the different exposure-induced behavioral phenotypes, facilitate improved genetic and neurobehavioral analysis in mechanistic determination studies and provide a robust framework for analyzing complex behaviors found in higher-order model systems.

摘要

斑马鱼已成为筛选发育神经毒性化学物质及其分子靶标的重要模式生物。斑马鱼作为筛选模型的成功部分归因于其物理特征,包括相对简单的神经系统、快速发育、实验可操作性以及遗传多样性,同时结合了允许生成大量高维行为数据的技术优势。这些数据很复杂,需要先进的机器学习和统计技术来全面分析和捕捉时空反应。为了实现这一目标,我们使用未暴露的幼鱼的行为数据训练了半监督深度自动编码器,以提取典型的“正常”行为。在训练后,我们的网络使用从暴露于有毒物质(包括纳米材料、芳烃、全氟和多氟烷基物质(PFAS)和其他环境污染物)后行为发生显著变化的幼虫的数据进行了评估。此外,我们的模型还确定了新的化学物质(全氟-n-十八烷酸、8-氯全氟辛基膦酸和九氟戊酰胺)能够在未单独使用移动距离捕捉到的多个化学浓度对中诱导异常行为。利用这个深度学习模型将能够更好地描述不同的暴露诱导行为表型,促进在机制确定研究中进行遗传和神经行为分析的改进,并为分析在更高阶模型系统中发现的复杂行为提供稳健的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24fe/11414989/d62b30643f20/pcbi.1012423.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验