Ensink Elliot, Jordan Tessa, Medeiros Hyllana C D, Thurston Galloway, Pardal Anmol, Yu Lei, Lunt Sophia Y
Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
Genetics and Genome Sciences Program, Michigan State University, East Lansing, MI, USA.
bioRxiv. 2023 Sep 17:2023.09.15.557984. doi: 10.1101/2023.09.15.557984.
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with high mortality and limited efficacious therapeutic options. PDAC cells undergo metabolic alterations to survive within a nutrient-depleted tumor microenvironment. One critical metabolic shift in PDAC cells occurs through altered isoform expression of the glycolytic enzyme, pyruvate kinase (PK). Pancreatic cancer cells preferentially upregulate pyruvate kinase muscle isoform 2 isoform (PKM2). PKM2 expression reprograms many metabolic pathways, but little is known about its impact on cystine metabolism. Cystine metabolism is critical for supporting survival through its role in defense against ferroptosis, a non-apoptotic iron-dependent form of cell death characterized by unchecked lipid peroxidation. To improve our understanding of the role of PKM2 in cystine metabolism and ferroptosis in PDAC, we generated PKM2 knockout (KO) human PDAC cells. Fascinatingly, PKM2KO cells demonstrate a remarkable resistance to cystine starvation mediated ferroptosis. This resistance to ferroptosis is caused by decreased PK activity, rather than an isoform-specific effect. We further utilized stable isotope tracing to evaluate the impact of glucose and glutamine reprogramming in PKM2KO cells. PKM2KO cells depend on glutamine metabolism to support antioxidant defenses against lipid peroxidation, primarily by increased glutamine flux through the malate aspartate shuttle and utilization of ME1 to produce NADPH. Ferroptosis can be synergistically induced by the combination of PKM2 activation and inhibition of the cystine/glutamate antiporter . Proof-of-concept experiments demonstrate the efficacy of this mechanism as a novel treatment strategy for PDAC.
胰腺导管腺癌(PDAC)是一种侵袭性癌症,死亡率高且有效治疗选择有限。PDAC细胞会发生代谢改变,以便在营养匮乏的肿瘤微环境中存活。PDAC细胞中一个关键的代谢转变是通过糖酵解酶丙酮酸激酶(PK)异构体表达的改变而发生的。胰腺癌细胞优先上调丙酮酸激酶肌肉异构体2(PKM2)。PKM2的表达重编程了许多代谢途径,但人们对其对胱氨酸代谢的影响知之甚少。胱氨酸代谢对于通过其在抵御铁死亡中的作用来支持细胞存活至关重要,铁死亡是一种非凋亡性铁依赖性细胞死亡形式,其特征是不受控制的脂质过氧化。为了更好地理解PKM2在PDAC的胱氨酸代谢和铁死亡中的作用,我们构建了PKM2基因敲除(KO)的人PDAC细胞。令人着迷的是,PKM2基因敲除细胞对胱氨酸饥饿介导的铁死亡表现出显著的抗性。这种对铁死亡的抗性是由PK活性降低引起的,而不是异构体特异性效应。我们进一步利用稳定同位素示踪来评估葡萄糖和谷氨酰胺重编程对PKM2基因敲除细胞的影响。PKM2基因敲除细胞依赖谷氨酰胺代谢来支持对抗脂质过氧化的抗氧化防御,主要是通过增加谷氨酰胺通过苹果酸天冬氨酸穿梭的通量以及利用苹果酸酶1(ME1)产生还原型辅酶II(NADPH)。PKM2激活与胱氨酸/谷氨酸反向转运体抑制相结合可协同诱导铁死亡。概念验证实验证明了这种机制作为PDAC一种新型治疗策略的有效性。