Suppr超能文献

STARR-seq数据中普遍存在假阳性和假阴性的潜在原因。

Underlying causes for prevalent false positives and false negatives in STARR-seq data.

作者信息

Ni Pengyu, Wu Siwen, Su Zhengchang

机构信息

Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.

出版信息

NAR Genom Bioinform. 2023 Sep 22;5(3):lqad085. doi: 10.1093/nargab/lqad085. eCollection 2023 Sep.

Abstract

Self-transcribing active regulatory region sequencing (STARR-seq) and its variants have been widely used to characterize enhancers. However, it has been reported that up to 87% of STARR-seq peaks are located in repressive chromatin and are not functional in the tested cells. While some of the STARR-seq peaks in repressive chromatin might be active in other cell/tissue types, some others might be false positives. Meanwhile, many active enhancers may not be identified by the current STARR-seq methods. Although methods have been proposed to mitigate systematic errors caused by the use of plasmid vectors, the artifacts due to the intrinsic limitations of current STARR-seq methods are still prevalent and the underlying causes are not fully understood. Based on predicted -regulatory modules (CRMs) and non-CRMs in the human genome as well as predicted active CRMs and non-active CRMs in a few human cell lines/tissues with STARR-seq data available, we reveal prevalent false positives and false negatives in STARR-seq peaks generated by major variants of STARR-seq methods and possible underlying causes. Our results will help design strategies to improve STARR-seq methods and interpret the results.

摘要

自转录活性调控区测序(STARR-seq)及其变体已被广泛用于表征增强子。然而,据报道,高达87%的STARR-seq峰位于抑制性染色质中,且在测试细胞中无功能。虽然抑制性染色质中的一些STARR-seq峰可能在其他细胞/组织类型中具有活性,但其他一些可能是假阳性。同时,许多活性增强子可能无法通过当前的STARR-seq方法鉴定出来。尽管已经提出了一些方法来减轻使用质粒载体引起的系统误差,但由于当前STARR-seq方法的固有局限性导致的假象仍然普遍存在,其根本原因尚未完全了解。基于人类基因组中预测的调控模块(CRM)和非CRM,以及在一些有STARR-seq数据的人类细胞系/组织中预测的活性CRM和非活性CRM,我们揭示了STARR-seq方法主要变体产生的STARR-seq峰中普遍存在的假阳性和假阴性以及可能的潜在原因。我们的结果将有助于设计改进STARR-seq方法的策略并解释结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e367/10516709/8b2088f5ac12/lqad085fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验