Suppr超能文献

Dnm1l 的缺失诱导的代谢和细胞周期转变可减弱小鼠胚胎干细胞中多能性的解体。

Metabolic and cell cycle shift induced by the deletion of Dnm1l attenuates the dissolution of pluripotency in mouse embryonic stem cells.

机构信息

Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul, 05029, Republic of Korea.

Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea.

出版信息

Cell Mol Life Sci. 2023 Sep 25;80(10):302. doi: 10.1007/s00018-023-04962-x.

Abstract

Mitochondria are versatile organelles that continuously change their morphology via fission and fusion. However, the detailed functions of mitochondrial dynamics-related genes in pluripotent stem cells remain largely unclear. Here, we aimed to determine the effects on energy metabolism and differentiation ability of mouse embryonic stem cells (ESCs) following deletion of the mitochondrial fission-related gene Dnml1. Resultant Dnm1l ESCs maintained major pluripotency characteristics. However, Dnm1l ESCs showed several phenotypic changes, including the inhibition of differentiation ability (dissolution of pluripotency). Notably, Dnm1l ESCs maintained the expression of the pluripotency marker Oct4 and undifferentiated colony types upon differentiation induction. RNA sequencing analysis revealed that the most frequently differentially expressed genes were enriched in the glutathione metabolic pathway. Our data suggested that differentiation inhibition of Dnm1l ESCs was primarily due to metabolic shift from glycolysis to OXPHOS, G2/M phase retardation, and high level of Nanog and 2-cell-specific gene expression.

摘要

线粒体是多功能细胞器,可通过分裂和融合不断改变其形态。然而,与线粒体动力学相关的基因在多能干细胞中的详细功能在很大程度上仍不清楚。在这里,我们旨在确定缺失与线粒体分裂相关的基因 Dnml1 后对小鼠胚胎干细胞 (ESC) 的能量代谢和分化能力的影响。产生的 Dnm1l ESC 保持了主要的多能性特征。然而,Dnm1l ESC 表现出多种表型变化,包括分化能力抑制(多能性溶解)。值得注意的是,Dnm1l ESC 在分化诱导时保持了多能性标志物 Oct4 的表达和未分化集落类型。RNA 测序分析表明,最常差异表达的基因富集在谷胱甘肽代谢途径中。我们的数据表明,Dnm1l ESC 的分化抑制主要是由于代谢从糖酵解向 OXPHOS 的转变、G2/M 期延迟以及 Nanog 和 2 细胞特异性基因表达水平升高。

相似文献

2
Role of mitochondrial fission-related genes in mitochondrial morphology and energy metabolism in mouse embryonic stem cells.
Redox Biol. 2020 Sep;36:101599. doi: 10.1016/j.redox.2020.101599. Epub 2020 May 30.
3
Changes in the Expression of Mitochondrial Morphology-Related Genes during the Differentiation of Murine Embryonic Stem Cells.
Stem Cells Int. 2020 Jan 28;2020:9369268. doi: 10.1155/2020/9369268. eCollection 2020.
4
MTCH2-mediated mitochondrial fusion drives exit from naïve pluripotency in embryonic stem cells.
Nat Commun. 2018 Dec 3;9(1):5132. doi: 10.1038/s41467-018-07519-w.
9
Derivation of pluripotent stem cells from nascent undifferentiated teratoma.
Dev Biol. 2019 Feb 1;446(1):43-55. doi: 10.1016/j.ydbio.2018.11.020. Epub 2018 Dec 5.
10
Interaction Between Sympk and Oct4 Promotes Mouse Embryonic Stem Cell Proliferation.
Stem Cells. 2019 Jun;37(6):743-753. doi: 10.1002/stem.2992. Epub 2019 Mar 9.

本文引用的文献

1
Role of mitochondrial fission-related genes in mitochondrial morphology and energy metabolism in mouse embryonic stem cells.
Redox Biol. 2020 Sep;36:101599. doi: 10.1016/j.redox.2020.101599. Epub 2020 May 30.
2
Regulation of Nrf2 by Mitochondrial Reactive Oxygen Species in Physiology and Pathology.
Biomolecules. 2020 Feb 17;10(2):320. doi: 10.3390/biom10020320.
3
The cell biology of mitochondrial membrane dynamics.
Nat Rev Mol Cell Biol. 2020 Apr;21(4):204-224. doi: 10.1038/s41580-020-0210-7. Epub 2020 Feb 18.
5
Advances in genome editing through control of DNA repair pathways.
Nat Cell Biol. 2019 Dec;21(12):1468-1478. doi: 10.1038/s41556-019-0425-z. Epub 2019 Dec 2.
6
Emerging role of mitophagy in cardiovascular physiology and pathology.
Mol Aspects Med. 2020 Feb;71:100822. doi: 10.1016/j.mam.2019.09.006. Epub 2019 Oct 3.
7
Glutamine independence is a selectable feature of pluripotent stem cells.
Nat Metab. 2019 Jul;1(7):676-687. doi: 10.1038/s42255-019-0082-3. Epub 2019 Jul 8.
10
The molecular logic of Nanog-induced self-renewal in mouse embryonic stem cells.
Nat Commun. 2019 Mar 7;10(1):1109. doi: 10.1038/s41467-019-09041-z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验