Suppr超能文献

基于机器学习的多模态三维打印实现支架硬度的微调控。

Multimodal Three-Dimensional Printing for Micro-Modulation of Scaffold Stiffness Through Machine Learning.

机构信息

Department of Bioengineering, University of California San Diego, La Jolla, California, USA.

Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California, USA.

出版信息

Tissue Eng Part A. 2024 Jun;30(11-12):280-292. doi: 10.1089/ten.TEA.2023.0193. Epub 2023 Oct 26.

Abstract

The ability to precisely control a scaffold's microstructure and geometry with light-based three-dimensional (3D) printing has been widely demonstrated. However, the modulation of scaffold's mechanical properties through prescribed printing parameters is still underexplored. This study demonstrates a novel 3D-printing workflow to create a complex, elastomeric scaffold with precision-engineered stiffness control by utilizing machine learning. Various printing parameters, including the exposure time, light intensity, printing infill, laser pump current, and printing speed were modulated to print poly (glycerol sebacate) acrylate (PGSA) scaffolds with mechanical properties ranging from 49.3 ± 3.3 kPa to 2.8 ± 0.3 MPa. This enables flexibility in spatial stiffness modulation in addition to high-resolution scaffold fabrication. Then, a neural network-based machine learning model was developed and validated to optimize printing parameters to yield scaffolds with user-defined stiffness modulation for two different vat photopolymerization methods: a digital light processing (DLP)-based 3D printer was utilized to rapidly fabricate stiffness-modulated scaffolds with features on the hundreds of micron scale and a two-photon polymerization (2PP) 3D printer was utilized to print fine structures on the submicron scale. A novel 3D-printing workflow was designed to utilize both DLP-based and 2PP 3D printers to create multiscale scaffolds with precision-tuned stiffness control over both gross and fine geometric features. The described workflow can be used to fabricate scaffolds for a variety of tissue engineering applications, specifically for interfacial tissue engineering for which adjacent tissues possess heterogeneous mechanical properties (e.g., muscle-tendon).

摘要

利用基于光的三维(3D)打印精确控制支架的微观结构和几何形状的能力已得到广泛证明。然而,通过规定的打印参数来调节支架的机械性能仍未得到充分探索。本研究展示了一种新颖的 3D 打印工作流程,通过利用机器学习来创建具有复杂弹性支架和精确设计的刚度控制的方法。通过调节各种打印参数,包括曝光时间、光强度、打印填充率、激光泵电流和打印速度,来打印聚(癸二酸丙二醇酯)丙烯酰胺(PGSA)支架,其机械性能范围从 49.3±3.3 kPa 到 2.8±0.3 MPa。这不仅使空间刚度调节具有灵活性,还可以实现高分辨率支架制造。然后,开发并验证了基于神经网络的机器学习模型,以优化打印参数,从而为两种不同的 vat 光聚合方法生成具有用户定义刚度调节的支架:使用数字光处理(DLP)3D 打印机快速制造具有数百微米特征的刚度调节支架,使用双光子聚合(2PP)3D 打印机在亚微米尺度上打印精细结构。设计了一种新颖的 3D 打印工作流程,利用 DLP 3D 打印机和 2PP 3D 打印机来制造具有精确调节刚度控制的多尺度支架,可对宏观和微观几何特征进行精确调节。所描述的工作流程可用于制造各种组织工程应用的支架,特别是对于相邻组织具有异质机械性能的界面组织工程(例如肌肉-肌腱)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验