Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada.
Int J Hyperthermia. 2023;40(1):2260127. doi: 10.1080/02656736.2023.2260127. Epub 2023 Sep 25.
Focused ultrasound (FUS) therapy has emerged as a promising noninvasive solution for tumor ablation. Accurate monitoring and guidance of ultrasound energy is crucial for effective FUS treatment. Although ultrasound (US) imaging is a well-suited modality for FUS monitoring, US-guided FUS (USgFUS) faces challenges in achieving precise monitoring, leading to unpredictable ablation shapes and a lack of quantitative monitoring. The demand for precise FUS monitoring heightens when complete tumor ablation involves controlling multiple sonication procedures.
To address these challenges, we propose an artificial intelligence (AI)-assisted USgFUS framework, incorporating an AI segmentation model with B-mode ultrasound imaging. This method labels the ablated regions distinguished by the hyperechogenicity effect, potentially bolstering FUS guidance. We evaluated our proposed method using the Swin-Unet AI architecture, conducting experiments with a USgFUS setup on chicken breast tissue.
Our results showed a 93% accuracy in identifying ablated areas marked by the hyperechogenicity effect in B-mode imaging.
Our findings suggest that AI-assisted ultrasound monitoring can significantly improve the precision and control of FUS treatments, suggesting a crucial advancement toward the development of more effective FUS treatment strategies.
聚焦超声(FUS)治疗技术已成为肿瘤消融的一种有前途的非侵入性解决方案。准确监测和引导超声能量对于有效的 FUS 治疗至关重要。尽管超声(US)成像非常适合 FUS 监测,但 US 引导的 FUS(USgFUS)在实现精确监测方面面临挑战,导致消融形状不可预测且缺乏定量监测。当完全消融肿瘤需要控制多个超声处理程序时,对精确 FUS 监测的需求就会增加。
为了解决这些挑战,我们提出了一种人工智能(AI)辅助的 USgFUS 框架,该框架结合了 AI 分割模型和 B 模式超声成像。该方法标记由超声增强效应区分的消融区域,从而可能增强 FUS 引导。我们使用 Swin-Unet AI 架构评估了我们提出的方法,并在鸡胸组织的 USgFUS 设备上进行了实验。
我们的结果表明,在 B 模式成像中,识别由超声增强效应标记的消融区域的准确率达到 93%。
我们的研究结果表明,人工智能辅助的超声监测可以显著提高 FUS 治疗的精度和控制,这是朝着开发更有效的 FUS 治疗策略迈出的重要一步。