Suppr超能文献

基于灰度共生矩阵分析喉鳞状细胞癌核纹理特征:聚焦人工智能方法。

Gray-Level Co-occurrence Matrix Analysis of Nuclear Textural Patterns in Laryngeal Squamous Cell Carcinoma: Focus on Artificial Intelligence Methods.

机构信息

University of Belgrade, Faculty of Medicine, Clinical Hospital Center "Zemun", Vukova 9, RS-11080 Belgrade, Serbia.

University of Belgrade, Faculty of Medicine, University Clinical Centre of Serbia, Dr. Koste Todorovića 8, RS-11129, Belgrade, Serbia.

出版信息

Microsc Microanal. 2023 Jun 9;29(3):1220-1227. doi: 10.1093/micmic/ozad042.

Abstract

Gray-level co-occurrence matrix (GLCM) and discrete wavelet transform (DWT) analyses are two contemporary computational methods that can identify discrete changes in cell and tissue textural features. Previous research has indicated that these methods may be applicable in the pathology for identification and classification of various types of cancers. In this study, we present findings that squamous epithelial cells in laryngeal carcinoma, which appear morphologically intact during conventional pathohistological evaluation, have distinct nuclear GLCM and DWT features. The average values of nuclear GLCM indicators of these cells, such as angular second moment, inverse difference moment, and textural contrast, substantially differ when compared to those in noncancerous tissue. In this work, we also propose machine learning models based on random forests and support vector machine that can be successfully trained to separate the cells using GLCM and DWT quantifiers as input data. We show that, based on a limited cell sample, these models have relatively good classification accuracy and discriminatory power, which makes them suitable candidates for future development of AI-based sensors potentially applicable in laryngeal carcinoma diagnostic protocols.

摘要

灰度共生矩阵(GLCM)和离散小波变换(DWT)分析是两种当代计算方法,可识别细胞和组织纹理特征的离散变化。先前的研究表明,这些方法可能适用于病理学中各种类型癌症的识别和分类。在这项研究中,我们发现喉癌中的鳞状上皮细胞在常规病理组织学评估中形态完整,但具有明显的核 GLCM 和 DWT 特征。与非癌组织相比,这些细胞的核 GLCM 指标的平均值,如角二阶矩、逆差矩和纹理对比度,有显著差异。在这项工作中,我们还提出了基于随机森林和支持向量机的机器学习模型,这些模型可以成功地使用 GLCM 和 DWT 量化指标作为输入数据进行细胞分离训练。我们表明,基于有限的细胞样本,这些模型具有相对较好的分类准确性和区分能力,这使它们成为未来基于人工智能的传感器的有前途的候选者,这些传感器可能适用于喉癌诊断方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验