Suppr超能文献

基于机器学习和多目标优化的高熵合金加速设计。

Accelerated Design for High-Entropy Alloys Based on Machine Learning and Multiobjective Optimization.

机构信息

Department of Mathematics, College of Sciences, Shanghai University, Shanghai 200444, China.

Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.

出版信息

J Chem Inf Model. 2023 Oct 9;63(19):6029-6042. doi: 10.1021/acs.jcim.3c00916. Epub 2023 Sep 25.

Abstract

High-entropy alloys (HEAs) with high hardness and high ductility can be considered as candidates for wear-resistant applications. However, designing novel HEAs with multiple desired properties using traditional alloy design methods remains challenging due to the enormous composition space. In this work, we proposed a machine-learning-based framework to design HEAs with high Vickers hardness () and high compressive fracture strain (). Initially, we constructed data sets containing 172,467 data with 161 features for and , respectively. Four-step feature selection was performed, with the selection of 12 and 8 features for the and prediction models based on the optimal algorithms of the support vector machine (SVR) and light gradient boosting machine (LightGBM), respectively. The of the well-trained models reached 0.76 and 0.90 for the 10-fold cross validation. Nondominated sorting genetic algorithm version II (NSGA-II) and virtual screening were employed to search for the optimal alloying compositions, and four recommended candidates were synthesized to validate our methods. Notably, the of three candidates have shown significant improvements compared to the samples with similar in the original data sets, with increases of 135.8, 282.4, and 194.1% respectively. Analyzing the candidates, we have recommended suitable atomic percentage ranges for elements such as Al (2-14.8 at %), Nb (4-25 at %), and Mo (3-9.9 at %) in order to design HEAs with high hardness and ductility.

摘要

高熵合金(HEAs)具有高硬度和高延展性,可以被视为耐磨应用的候选材料。然而,由于成分空间巨大,使用传统的合金设计方法设计具有多种理想性能的新型 HEAs 仍然具有挑战性。在这项工作中,我们提出了一种基于机器学习的框架,用于设计具有高维氏硬度()和高压缩断裂应变()的 HEAs。首先,我们构建了包含 172467 个数据点的数据集,用于和分别包含 161 个特征。我们进行了四步特征选择,基于支持向量机(SVR)和轻梯度提升机(LightGBM)的最优算法,分别为预测模型选择了 12 个和 8 个特征。经过充分训练的模型的精度达到了 0.76 和 0.90,用于 10 倍交叉验证。非支配排序遗传算法版本 II(NSGA-II)和虚拟筛选用于搜索最佳合金成分,我们合成了四个推荐的候选物来验证我们的方法。值得注意的是,与原始数据集中具有相似的硬度的样品相比,三个候选物的硬度分别提高了 135.8%、282.4%和 194.1%。对候选物进行分析后,我们为 Al(2-14.8 at%)、Nb(4-25 at%)和 Mo(3-9.9 at%)等元素推荐了合适的原子百分比范围,以设计具有高硬度和延展性的 HEAs。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验