Suppr超能文献

具有高硬度的高熵合金设计:一种元启发式方法。

Designing of high entropy alloys with high hardness: a metaheuristic approach.

作者信息

Poonia Ansh, Kishor Modalavalasa, Ayyagari Kameswari Prasada Rao

机构信息

BML Munjal University, Gurugram, Haryana, 122413, India.

出版信息

Sci Rep. 2024 Apr 2;14(1):7692. doi: 10.1038/s41598-024-57094-y.

Abstract

The near-infinite compositional space of high-entropy-alloys (HEAs) is a huge resource-intensive task for developing exceptional materials. In the present study, an algorithmic framework has been developed to optimize the composition of an alloy with chosen set of elements, aiming to maximize the hardness of the former. The influence of phase on hardness prediction of HEAs was thoroughly examined. This study aims to establish generalized prediction models that aren't confined by any specific set of elements. We trained the HEA identification model to classify HEAs from non-HEAs, the multi-labeled phase classification model to predict phases of HEAs also considering the processing route involved in the synthesis of the alloy, and the hardness prediction model for predicting hardness and optimizing the composition of the given alloy. The purposed algorithmic framework uses twenty-nine alloy descriptors to compute the composition that demonstrates maximum hardness for the given set of elements along with its phase(s) and a label stating whether it is classified as HEA or not.

摘要

高熵合金(HEA)近乎无限的成分空间对于开发特殊材料而言是一项资源密集型的艰巨任务。在本研究中,已开发出一种算法框架,用于优化具有选定元素集的合金成分,旨在使前者的硬度最大化。深入研究了相在高熵合金硬度预测中的影响。本研究旨在建立不受任何特定元素集限制的通用预测模型。我们训练了高熵合金识别模型,以将高熵合金与非高熵合金进行分类;训练了多标签相分类模型,用于预测高熵合金的相,同时考虑合金合成过程中涉及的加工路线;还训练了硬度预测模型,用于预测给定合金的硬度并优化其成分。所提出的算法框架使用29个合金描述符来计算给定元素集具有最大硬度的成分及其相,并给出一个表明其是否被分类为高熵合金的标签。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a709/10987542/f7b4401a9214/41598_2024_57094_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验