监测和模拟景观变化:土地利用的长期变化和长期平均气候如何影响马拉维南部的区域生物物理条件?

Monitoring and simulating landscape changes: how do long-term changes in land use and long-term average climate affect regional biophysical conditions in southern Malawi?

机构信息

Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK.

Malawi-Liverpool-Wellcome Programme, Blantyre, Malawi.

出版信息

Environ Monit Assess. 2023 Sep 26;195(10):1247. doi: 10.1007/s10661-023-11783-9.

Abstract

We set out to reveal the effects of long-term changes in land use and long-term average climate on the regional biophysical environment in southern Malawi. Object-oriented supervised image classification was performed on Landsat 5 and 8 satellite images from 1990 to 2020 to identify and quantify past and present land use-land cover changes using a support vector machine classifier. Subsequently, using 2000 and 2010 land use-land cover in an artificial neural network, land use-land cover for 2020 driven by elevation, slope, precipitation and temperature, population density, poverty, distance to major roads, and distance to villages data was simulated. Between 1990 and 2020, area of land cover increased in built-up (209%), bare land (10%), and cropland (10%) and decreased in forest (30%), herbaceous (4%), shrubland (20%), and water area (20%). Overall, the findings reveal that southern Malawi is dominantly an agro-mosaic landscape shaped by the combined effects of urban and agricultural expansions and climate. The findings also suggest the need to enhance the machine learning algorithms to improve capacity for landscape modelling and, ultimately, prevention, preparedness, and response to environmental risks.

摘要

我们旨在揭示长期土地利用变化和长期平均气候对马拉维南部区域生物物理环境的影响。我们对 1990 年至 2020 年的 Landsat 5 和 8 卫星图像进行了面向对象的监督图像分类,使用支持向量机分类器识别和量化过去和现在的土地利用/土地覆盖变化。随后,我们使用 2000 年和 2010 年的土地利用/土地覆盖数据,在人工神经网络中,利用海拔、坡度、降水和温度、人口密度、贫困、到主要道路的距离和到村庄的距离数据来模拟 2020 年的土地利用/土地覆盖。在 1990 年至 2020 年间,建设用地(增长 209%)、裸地(增长 10%)和耕地(增长 10%)面积增加,而森林(减少 30%)、草本植被(减少 4%)、灌木地(减少 20%)和水域(减少 20%)面积减少。总体而言,研究结果表明,马拉维南部主要是由城市和农业扩张以及气候共同作用形成的农业镶嵌景观。研究结果还表明,需要增强机器学习算法,以提高景观建模能力,并最终预防、准备和应对环境风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d3/10522741/7fa36c20d426/10661_2023_11783_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索