Suppr超能文献

预测患者特异性增强子-启动子相互作用。

Predicting patient-specific enhancer-promoter interactions.

机构信息

Wisconsin Institute for Discovery, 330 N. Orchard Street, Madison, WI 53715, USA; The Max Harry Weil Institute of Critical Care Research & Innovation, University of Michigan, Ann Arbor, MI, USA; Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.

Wisconsin Institute for Discovery, 330 N. Orchard Street, Madison, WI 53715, USA; Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53715, USA.

出版信息

Cell Rep Methods. 2023 Sep 25;3(9):100594. doi: 10.1016/j.crmeth.2023.100594.

Abstract

Computational methods that can predict hard-to-measure modalities from those that are easier to measure, in a patient-specific manner, play a critical role in personalized medicine. In this issue of Cell Reports Methods, Khurana et al. present differential gene targets of accessible chromatin (DGTAC), an approach which predicts patient-specific enhancer-promoter interactions.

摘要

能够以患者特异性方式从较易测量的模式预测难以测量的模式的计算方法在个性化医疗中起着关键作用。在本期《Cell Reports Methods》中,Khurana 等人提出了可及染色质的差异基因靶点(DGTAC)方法,该方法可预测患者特异性增强子-启动子相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af9b/10545932/3f087452ddc5/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验