Center for Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Borschkegasse 8a, Vienna, 1090, Austria.
Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, Vienna, 1090, Austria.
Adv Sci (Weinh). 2023 Nov;10(32):e2301939. doi: 10.1002/advs.202301939. Epub 2023 Sep 26.
The leading first-in-class ruthenium-complex BOLD-100 currently undergoes clinical phase-II anticancer evaluation. Recently, BOLD-100 is identified as anti-Warburg compound. The present study shows that also deregulated lipid metabolism parameters characterize acquired BOLD-100-resistant colon and pancreatic carcinoma cells. Acute BOLD-100 treatment reduces lipid droplet contents of BOLD-100-sensitive but not -resistant cells. Despite enhanced glycolysis fueling lipid accumulation, BOLD-100-resistant cells reveal diminished lactate secretion based on monocarboxylate transporter 1 (MCT1) loss mediated by a frame-shift mutation in the MCT1 chaperone basigin. Glycolysis and lipid catabolism converge in the production of protein/histone acetylation substrate acetyl-coenzymeA (CoA). Mass spectrometric and nuclear magnetic resonance analyses uncover spontaneous cell-free BOLD-100-CoA adduct formation suggesting acetyl-CoA depletion as mechanism bridging BOLD-100-induced lipid metabolism alterations and histone acetylation-mediated gene expression deregulation. Indeed, BOLD-100 treatment decreases histone acetylation selectively in sensitive cells. Pharmacological targeting confirms histone de-acetylation as central mode-of-action of BOLD-100 and metabolic programs stabilizing histone acetylation as relevant Achilles' heel of acquired BOLD-100-resistant cell and xenograft models. Accordingly, histone gene expression changes also predict intrinsic BOLD-100 responsiveness. Summarizing, BOLD-100 is identified as epigenetically active substance acting via targeting several onco-metabolic pathways. Identification of the lipid metabolism as driver of acquired BOLD-100 resistance opens novel strategies to tackle therapy failure.
目前,领先的第一类钌配合物 BOLD-100 正在进行临床二期抗癌评估。最近,BOLD-100 被鉴定为抗沃伯格化合物。本研究表明,失调的脂质代谢参数也可作为获得性 BOLD-100 耐药结肠和胰腺癌的特征。急性 BOLD-100 处理可降低 BOLD-100 敏感但不耐药细胞的脂滴含量。尽管增强的糖酵解促进了脂质积累,但 BOLD-100 耐药细胞的乳酸分泌减少,这是由于单羧酸转运蛋白 1(MCT1)的丢失介导的,而 MCT1 伴侣 basigin 存在框移突变。糖酵解和脂质分解代谢在产生蛋白质/组蛋白乙酰化底物乙酰辅酶 A(CoA)中汇聚。质谱和核磁共振分析揭示了自发的无细胞 BOLD-100-CoA 加合物形成,表明乙酰 CoA 耗竭作为连接 BOLD-100 诱导的脂质代谢改变和组蛋白乙酰化介导的基因表达失调的机制。事实上,BOLD-100 处理可选择性地降低敏感细胞中的组蛋白乙酰化。药物靶向证实组蛋白去乙酰化是 BOLD-100 的主要作用模式,而稳定组蛋白乙酰化的代谢程序是获得性 BOLD-100 耐药细胞和异种移植模型的相关阿喀琉斯之踵。因此,组蛋白基因表达的变化也可以预测内在的 BOLD-100 反应性。综上所述,BOLD-100 被鉴定为一种通过靶向几种癌代谢途径发挥表观遗传活性的物质。确定脂质代谢是获得性 BOLD-100 耐药的驱动因素,为解决治疗失败提供了新的策略。