Lee Justine, Chen Siwei, Monfared Roudabeh Vakil, Derdeyn Pieter, Leong Kenneth, Chang Tiffany, Beier Kevin, Baldi Pierre, Alachkar Amal
Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA.
Department of Computer Science, School of Information and Computer Sciences, University of California, Irvine, Irvine, CA, USA.
iScience. 2023 Sep 1;26(10):107810. doi: 10.1016/j.isci.2023.107810. eCollection 2023 Oct 20.
Research shows that brain circuits controlling vital physiological processes are closely linked with endogenous time-keeping systems. In this study, we aimed to examine oscillatory gene expression patterns of well-characterized neuronal circuits by reanalyzing publicly available transcriptomic data from a spatiotemporal gene expression atlas of a non-human primate. Unexpectedly, brain structures known for regulating circadian processes (e.g., hypothalamic nuclei) did not exhibit robust cycling expression. In contrast, basal ganglia nuclei, not typically associated with circadian physiology, displayed the most dynamic cycling behavior of its genes marked by sharp temporally defined expression peaks. Intriguingly, the mammillary bodies, considered hypothalamic nuclei, exhibited gene expression patterns resembling the basal ganglia, prompting reevaluation of their classification. Our results emphasize the potential for high throughput circadian gene expression analysis to deepen our understanding of the functional synchronization across brain structures that influence physiological processes and resulting complex behaviors.
研究表明,控制重要生理过程的脑回路与内源性计时系统紧密相连。在本研究中,我们旨在通过重新分析来自非人类灵长类动物时空基因表达图谱的公开转录组数据,来研究特征明确的神经回路的振荡基因表达模式。出乎意料的是,以调节昼夜节律过程而闻名的脑结构(如下丘脑核)并未表现出强烈的循环表达。相比之下,通常与昼夜生理无关的基底神经节核,其基因显示出最动态的循环行为,其特征是具有清晰的时间定义的表达峰值。有趣的是,被认为是下丘脑核的乳头体,其基因表达模式与基底神经节相似,这促使人们重新评估它们的分类。我们的结果强调了高通量昼夜节律基因表达分析在加深我们对影响生理过程和复杂行为的脑结构间功能同步理解方面的潜力。