Cui Elvis Han, Goldfine Allison B, Quinlan Michelle, James David A, Sverdlov Oleksandr
Department of Biostatistics, University of California, Los Angeles, Los Angeles, CA, United States.
Division of Translational Medicine, Cardiometabolic Disease, Novartis Institutes for Biomedical Research, Cambridge, MA, United States.
Front Clin Diabetes Healthc. 2023 Sep 11;4:1244613. doi: 10.3389/fcdhc.2023.1244613. eCollection 2023.
Continuous glucose monitoring (CGM) devices capture longitudinal data on interstitial glucose levels and are increasingly used to show the dynamics of diabetes metabolism. Given the complexity of CGM data, it is crucial to extract important patterns hidden in these data through efficient visualization and statistical analysis techniques.
In this paper, we adopted the concept of glucodensity, and using a subset of data from an ongoing clinical trial in pediatric individuals and young adults with new-onset type 1 diabetes, we performed a cluster analysis of glucodensities. We assessed the differences among the identified clusters using analysis of variance (ANOVA) with respect to residual pancreatic beta-cell function and some standard CGM-derived parameters such as time in range, time above range, and time below range.
Distinct CGM data patterns were identified using cluster analysis based on glucodensities. Statistically significant differences were shown among the clusters with respect to baseline levels of pancreatic beta-cell function surrogate (C-peptide) and with respect to time in range and time above range.
Our findings provide supportive evidence for the value of glucodensity in the analysis of CGM data. Some challenges in the modeling of CGM data include unbalanced data structure, missing observations, and many known and unknown confounders, which speaks to the importance of--and provides opportunities for--taking an approach integrating clinical, statistical, and data science expertise in the analysis of these data.
连续血糖监测(CGM)设备可获取间质葡萄糖水平的纵向数据,并越来越多地用于展示糖尿病代谢的动态变化。鉴于CGM数据的复杂性,通过有效的可视化和统计分析技术提取隐藏在这些数据中的重要模式至关重要。
在本文中,我们采用了葡萄糖密度的概念,并使用来自一项正在进行的针对新诊断1型糖尿病儿童和青年成人的临床试验的部分数据,对葡萄糖密度进行了聚类分析。我们使用方差分析(ANOVA)评估了所识别聚类之间在残余胰岛β细胞功能以及一些标准的CGM衍生参数(如血糖在目标范围内时间、高于目标范围时间和低于目标范围时间)方面的差异。
基于葡萄糖密度的聚类分析识别出了不同的CGM数据模式。在聚类之间,胰岛β细胞功能替代指标(C肽)的基线水平以及血糖在目标范围内时间和高于目标范围时间方面显示出统计学上的显著差异。
我们的研究结果为葡萄糖密度在CGM数据分析中的价值提供了支持性证据。CGM数据建模中的一些挑战包括数据结构不平衡、观测值缺失以及许多已知和未知的混杂因素,这表明在这些数据分析中采用整合临床、统计和数据科学专业知识的方法的重要性,并提供了机会。