Department of Diabetes, School of Life Course Sciences, King's College London, UK; DTx, Scientific Modelling, Novo Nordisk A/S, Denmark.
Department of Information Engineering, University of Padova, Padova, Italy.
Comput Methods Programs Biomed. 2021 Sep;209:106303. doi: 10.1016/j.cmpb.2021.106303. Epub 2021 Jul 27.
As continuous glucose monitoring (CGM) becomes common in research and clinical practice, there is a need to understand how CGM-based hypoglycemia relates to hypoglycemia episodes defined conventionally as patient reported hypoglycemia (PRH). Data show that CGM identify many episodes of low interstitial glucose (LIG) that are not experienced by patients, and so the aim of this study is to use different PRH simulations to optimize CGM parameters of threshold (h) and duration (d) to provide the best PRH detection performance.
The algorithm uses particle Markov chain Monte Carlo optimization to identify the optimal h and d which maximize an objective function for detecting PRH. We tested our algorithm by creating three different cases of PRH simulations.
We added three types of simulated PRH events to 10 weeks of anonymized CGM data from 96 type 1 diabetes people to see if the algorithm can detect the optimal parameters set out in the simulations. In simulation 1, we changed the locations of PRHs with respect to LIG episodes in the CGM signal to simulate random optimal LIG parameters for every individual. In simulation 2, the PRHs are CGM glucose <3.9 mmol/L followed by at least 20 min of rise > 0.11 mmol/L/min. Simulation 3 is like simulation 2 but with glucose threshold of 3.0 mmol/L. The median [interquartile range] of deviation between the optimized (found by the algorithm) and the optimal (known) h and d are -0.07% [-0.4, 1.9] and -1.3% [-5.9, 6.8], respectively across the subjects for simulation 1. The mean [min max] of the optimized LIG parameters are h = 3.8 [3.7, 3.8] mmol/L and d = 12 [10, 14] min for simulation 2 and they are h = 3.0 [2.9, 3] mmol/L and d = 10 [8, 14] min for simulation 3 across a 10-fold cross validation.
This work demonstrates the feasibility of the algorithm to find the best-fit definition of CGM-based hypoglycemia for PRH detection. In a prospective clinical study collecting CGM and PRH, the current algorithm will be used to optimize the definition of hypoglycemia with respect to PRH with the ambition of using the resulted definition as a surrogate for PRH in clinical practice.
随着连续血糖监测(CGM)在研究和临床实践中的普及,我们需要了解基于 CGM 的低血糖与传统上定义的患者报告性低血糖(PRH)之间的关系。数据显示,CGM 可以识别出许多患者未经历的低间质血糖(LIG)事件,因此本研究旨在使用不同的 PRH 模拟来优化 CGM 阈值(h)和持续时间(d)参数,以提供最佳的 PRH 检测性能。
该算法使用粒子马尔可夫链蒙特卡罗优化来确定最佳的 h 和 d,以最大程度地提高检测 PRH 的目标函数。我们通过创建三种不同的 PRH 模拟案例来测试我们的算法。
我们将三种类型的模拟 PRH 事件添加到 96 名 1 型糖尿病患者的 10 周匿名 CGM 数据中,以查看该算法是否可以检测到模拟中规定的最佳参数。在模拟 1 中,我们根据 CGM 信号中的 LIG 事件改变 PRH 的位置,以模拟每个个体的最佳随机 LIG 参数。在模拟 2 中,PRH 为 CGM 血糖<3.9mmol/L,随后至少 20min 内血糖升高>0.11mmol/L/min。模拟 3 与模拟 2 相同,但血糖阈值为 3.0mmol/L。对于模拟 1,在受试者中,优化(由算法找到)和最佳(已知)h 和 d 的中位数[四分位距]偏差分别为-0.07%[-0.4,1.9]和-1.3%[-5.9,6.8]。对于模拟 2,优化的平均[最小最大]LIG 参数为 h=3.8[3.7,3.8]mmol/L 和 d=12[10,14]min,对于模拟 3,优化的平均[最小最大]LIG 参数为 h=3.0[2.9,3]mmol/L 和 d=10[8,14]min,在 10 倍交叉验证中。
这项工作证明了该算法在寻找最佳 CGM 低血糖定义以检测 PRH 方面的可行性。在一项收集 CGM 和 PRH 的前瞻性临床研究中,当前的算法将用于优化 PRH 低血糖定义,旨在将所得定义用作临床实践中 PRH 的替代指标。