CiTIUS (Centro Singular de Investigación en Tecnoloxías Intelixentes), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
Unidad de Epidemiología Clínica, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain.
Stat Methods Med Res. 2021 Jun;30(6):1445-1464. doi: 10.1177/0962280221998064. Epub 2021 Mar 24.
Biosensor data have the potential to improve disease control and detection. However, the analysis of these data under free-living conditions is not feasible with current statistical techniques. To address this challenge, we introduce a new functional representation of biosensor data, termed the glucodensity, together with a data analysis framework based on distances between them. The new data analysis procedure is illustrated through an application in diabetes with continuous-time glucose monitoring (CGM) data. In this domain, we show marked improvement with respect to state-of-the-art analysis methods. In particular, our findings demonstrate that (i) the glucodensity possesses an extraordinary clinical sensitivity to capture the typical biomarkers used in the standard clinical practice in diabetes; (ii) previous biomarkers cannot accurately predict glucodensity, so that the latter is a richer source of information and; (iii) the glucodensity is a natural generalization of the time in range metric, this being the gold standard in the handling of CGM data. Furthermore, the new method overcomes many of the drawbacks of time in range metrics and provides more in-depth insight into assessing glucose metabolism.
生物传感器数据有可能改善疾病控制和检测。然而,目前的统计技术无法在自由生活条件下分析这些数据。为了解决这一挑战,我们引入了一种新的生物传感器数据的函数表示形式,称为葡萄糖密度,并结合了一种基于它们之间距离的数据分析框架。通过应用于具有连续时间血糖监测 (CGM) 数据的糖尿病,说明了新的数据分析程序。在这个领域,我们相对于最先进的分析方法显示出显著的改善。特别是,我们的发现表明:(i) 葡萄糖密度具有非凡的临床敏感性,可捕捉到糖尿病标准临床实践中使用的典型生物标志物;(ii) 先前的生物标志物不能准确预测葡萄糖密度,因此后者是更丰富的信息来源;(iii) 葡萄糖密度是时间范围内度量的自然推广,这是处理 CGM 数据的黄金标准。此外,新方法克服了时间范围内度量的许多缺点,并提供了更深入的了解葡萄糖代谢的评估。