Suppr超能文献

基于深度学习的组水平脑解码。

Group-level brain decoding with deep learning.

机构信息

Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford, UK.

Wellcome Centre for Integrative Neuroimaging, Oxford, UK.

出版信息

Hum Brain Mapp. 2023 Dec 1;44(17):6105-6119. doi: 10.1002/hbm.26500. Epub 2023 Sep 27.

Abstract

Decoding brain imaging data are gaining popularity, with applications in brain-computer interfaces and the study of neural representations. Decoding is typically subject-specific and does not generalise well over subjects, due to high amounts of between subject variability. Techniques that overcome this will not only provide richer neuroscientific insights but also make it possible for group-level models to outperform subject-specific models. Here, we propose a method that uses subject embedding, analogous to word embedding in natural language processing, to learn and exploit the structure in between-subject variability as part of a decoding model, our adaptation of the WaveNet architecture for classification. We apply this to magnetoencephalography data, where 15 subjects viewed 118 different images, with 30 examples per image; to classify images using the entire 1 s window following image presentation. We show that the combination of deep learning and subject embedding is crucial to closing the performance gap between subject- and group-level decoding models. Importantly, group models outperform subject models on low-accuracy subjects (although slightly impair high-accuracy subjects) and can be helpful for initialising subject models. While we have not generally found group-level models to perform better than subject-level models, the performance of group modelling is expected to be even higher with bigger datasets. In order to provide physiological interpretation at the group level, we make use of permutation feature importance. This provides insights into the spatiotemporal and spectral information encoded in the models. All code is available on GitHub (https://github.com/ricsinaruto/MEG-group-decode).

摘要

解码脑成像数据越来越受欢迎,其应用包括脑机接口和神经表示的研究。由于个体间的高度变异性,解码通常是特定于个体的,不能很好地推广到不同的个体。克服这一问题的技术不仅将提供更丰富的神经科学见解,而且还可以使组水平模型优于个体水平模型。在这里,我们提出了一种使用主体嵌入的方法,类似于自然语言处理中的词嵌入,以学习和利用主体间变异性的结构作为解码模型的一部分,这是我们对分类的 WaveNet 架构的改编。我们将其应用于脑磁图数据,其中 15 个主体观看了 118 个不同的图像,每个图像有 30 个示例;使用图像呈现后整个 1 秒窗口来对图像进行分类。我们表明,深度学习和主体嵌入的结合对于缩小个体和组水平解码模型之间的性能差距至关重要。重要的是,尽管组模型对高精度主体的影响略有降低,但组模型在低精度主体上的表现优于个体模型,并且可以帮助初始化个体模型。虽然我们通常没有发现组水平模型的性能优于个体水平模型,但随着更大的数据集,组建模的性能预计会更高。为了在组水平上提供生理解释,我们利用了置换特征重要性。这提供了模型中编码的时空和光谱信息的深入了解。所有代码都可在 GitHub 上获得(https://github.com/ricsinaruto/MEG-group-decode)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b24/10619368/388948d86d7c/HBM-44-6105-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验