Wei Xiaoxi, Narayan Jyotindra, Faisal A Aldo
Brain & Behaviour Lab, Department of Computing, Imperial College London, London SW7 2AZ, United Kingdom.
Chair in Digital Health, Universität Bayreuth, Kulmbach 95326, Germany.
J Neural Eng. 2025 Jan 23;22(1). doi: 10.1088/1741-2552/ad9957.
. Machine learning has enhanced the performance of decoding signals indicating human behaviour. Electroencephalography (EEG) brainwave decoding, as an exemplar indicating neural activity and human thoughts non-invasively, has been helpful in neural activity analysis and aiding paralysed patients via brain-computer interfaces. However, training machine learning algorithms on EEG encounters two primary challenges: variability across data sets and privacy concerns using data from individuals and data centres. Our objective is to address these challenges by integrating transfer learning for data variability and federated learning for data privacy into a unified approach.. We introduce the 'Sandwich' as a novel deep privacy-preserving meta-framework combining transfer learning and federated learning. The 'Sandwich' framework comprises three components: federated networks (first layers) that handle data set differences at the input level, a shared network (middle layer) learning common rules and applying transfer learning techniques, and individual classifiers (final layers) for specific brain tasks of each data set. This structure enables the central network (central server) to benefit from multiple data sets, while local branches (local servers) maintain data and label privacy.. We evaluated the 'Sandwich' meta-architecture in various configurations using the BEETL motor imagery challenge, a benchmark for heterogeneous EEG data sets. Compared with baseline models likeand, our 'Sandwich' implementations showed superior performance. The best-performing model, the Inception SanDwich with deep set alignment (), exceeded baseline methods by 9%.. The 'Sandwich' framework demonstrates advancements in federated deep transfer learning for diverse tasks and data sets. It outperforms conventional deep learning methods, showcasing the potential for effective use of larger, heterogeneous data sets with enhanced privacy. In addition, through its diverse implementations with various backbone architectures and transfer learning approaches, the 'Sandwich' framework shows the potential as a model-agnostic meta-framework for decoding time series data like EEG, suggesting a direction towards large-scale brainwave decoding by combining deep transfer learning with privacy-preserving federated learning.
机器学习提高了对指示人类行为的信号进行解码的性能。脑电图(EEG)脑波解码作为一种非侵入性指示神经活动和人类思维的范例,有助于神经活动分析,并通过脑机接口辅助瘫痪患者。然而,在EEG上训练机器学习算法面临两个主要挑战:数据集之间的变异性以及使用个人和数据中心数据时的隐私问题。我们的目标是通过将用于数据变异性的迁移学习和用于数据隐私的联邦学习集成到一种统一方法中来应对这些挑战。我们引入“三明治”作为一种结合迁移学习和联邦学习的新型深度隐私保护元框架。“三明治”框架由三个组件组成:在输入级别处理数据集差异的联邦网络(第一层)、学习通用规则并应用迁移学习技术的共享网络(中间层)以及针对每个数据集的特定脑任务的个体分类器(最后一层)。这种结构使中央网络(中央服务器)能够从多个数据集中受益,而本地分支(本地服务器)则保持数据和标签的隐私。我们使用BEETL运动想象挑战(一种异构EEG数据集的基准)在各种配置下评估了“三明治”元架构。与诸如之类的基线模型相比,我们的“三明治”实现表现出卓越的性能。性能最佳的模型,即具有深度集对齐的Inception SanDwich(),比基线方法高出9%。“三明治”框架展示了在针对不同任务和数据集的联邦深度迁移学习方面的进展。它优于传统深度学习方法,展示了有效使用更大的异构数据集并增强隐私的潜力。此外,通过其与各种骨干架构和迁移学习方法的多样化实现,“三明治”框架显示出作为一种与模型无关的元框架用于解码像EEG这样的时间序列数据的潜力,为通过结合深度迁移学习和隐私保护联邦学习进行大规模脑波解码指明了方向。