Suppr超能文献

具有星形胶质细胞驱动的短期记忆的人工神经网络模型

Artificial Neural Network Model with Astrocyte-Driven Short-Term Memory.

作者信息

Zimin Ilya A, Kazantsev Victor B, Stasenko Sergey V

机构信息

Laboratory of Advanced Methods for High-Dimensional Data Analysis, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia.

Laboratory of Neurobiomorphic Technologies, Moscow Institute of Physics and Technology, 117303 Moscow, Russia.

出版信息

Biomimetics (Basel). 2023 Sep 12;8(5):422. doi: 10.3390/biomimetics8050422.

Abstract

In this study, we introduce an innovative hybrid artificial neural network model incorporating astrocyte-driven short-term memory. The model combines a convolutional neural network with dynamic models of short-term synaptic plasticity and astrocytic modulation of synaptic transmission. The model's performance was evaluated using simulated data from visual change detection experiments conducted on mice. Comparisons were made between the proposed model, a recurrent neural network simulating short-term memory based on sustained neural activity, and a feedforward neural network with short-term synaptic depression (STPNet) trained to achieve the same performance level as the mice. The results revealed that incorporating astrocytic modulation of synaptic transmission enhanced the model's performance.

摘要

在本研究中,我们引入了一种创新的混合人工神经网络模型,该模型纳入了星形胶质细胞驱动的短期记忆。该模型将卷积神经网络与短期突触可塑性的动态模型以及突触传递的星形胶质细胞调节相结合。使用对小鼠进行的视觉变化检测实验的模拟数据评估了该模型的性能。在所提出的模型、基于持续神经活动模拟短期记忆的循环神经网络以及经过训练以达到与小鼠相同性能水平的具有短期突触抑制的前馈神经网络(STPNet)之间进行了比较。结果表明,纳入突触传递的星形胶质细胞调节提高了模型的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ab/10526164/722ffdbf07c1/biomimetics-08-00422-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验