Neurotechnology Department, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia.
Laboratory of Autowave Processes, Institute of Applied Physics, Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia.
Sensors (Basel). 2023 Jun 1;23(11):5272. doi: 10.3390/s23115272.
This study introduces a novel method for detecting the post-COVID state using ECG data. By leveraging a convolutional neural network, we identify "cardiospikes" present in the ECG data of individuals who have experienced a COVID-19 infection. With a test sample, we achieve an 87 percent accuracy in detecting these cardiospikes. Importantly, our research demonstrates that these observed cardiospikes are not artifacts of hardware-software signal distortions, but rather possess an inherent nature, indicating their potential as markers for COVID-specific modes of heart rhythm regulation. Additionally, we conduct blood parameter measurements on recovered COVID-19 patients and construct corresponding profiles. These findings contribute to the field of remote screening using mobile devices and heart rate telemetry for diagnosing and monitoring COVID-19.
本研究提出了一种利用心电图数据检测新冠后状态的新方法。通过使用卷积神经网络,我们识别出经历过 COVID-19 感染的个体心电图数据中的“心尖棘波”。在测试样本中,我们实现了 87%的检测准确率。重要的是,我们的研究表明,这些观察到的心尖棘波不是硬件-软件信号失真的伪影,而是具有固有特性,表明它们有可能成为 COVID 特定的心率调节模式的标志物。此外,我们对康复的 COVID-19 患者进行了血液参数测量,并构建了相应的图谱。这些发现为使用移动设备和心率遥测进行 COVID-19 的远程筛查诊断和监测提供了新的思路。