Fraczek-Szczypta Aneta, Kondracka Natalia, Zambrzycki Marcel, Gubernat Maciej, Czaja Pawel, Pawlyta Miroslawa, Jelen Piotr, Wielowski Ryszard, Jantas Danuta
Faculty of Materials Science and Ceramics, AGH University of Science and Technology in Krakow, Mickiewicza 30 Av., 30-059 Krakow, Poland.
Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology in Krakow, Mickiewicza 30 Av., 30-059 Krakow, Poland.
J Funct Biomater. 2023 Aug 28;14(9):443. doi: 10.3390/jfb14090443.
The main purpose of these studies was to obtain carbon-carbon composites with a core built of carbon fibers and a matrix in the form of pyrolytic carbon (PyC), obtained by using the chemical vapor deposition (CVD) method with direct electrical heating of a bundle of carbon fibers as a potential electrode material for nerve tissue stimulation. The methods used for the synthesis of PyC proposed in this paper allow us, with the appropriate selection of parameters, to obtain reproducible composites in the form of rods with diameters of about 300 µm in 120 s (CF_PyC_120). To evaluate the materials, various methods such as scanning electron microscopy (SEM), scanning transmission electron microscope (STEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and tensiometer techniques were used to study their microstructural, structural, chemical composition, surface morphology, and surface wettability. Assessing their applicability for contact with nervous tissue cells, the evaluation of cytotoxicity and biocompatibility using the SH-SY5Y human neuroblastoma cell line was performed. Viability and cytotoxicity tests (WST-1 and LDH release) along with cell morphology examination demonstrated that the CF_PyC_120 composites showed high biocompatibility compared to the reference sample (Pt wire), and the best adhesion of cells to the surface among all tested materials.
这些研究的主要目的是获得一种碳-碳复合材料,其核心由碳纤维构成,基体为热解碳(PyC),通过化学气相沉积(CVD)法,以直接电加热一束碳纤维的方式制备,作为神经组织刺激的潜在电极材料。本文提出的用于合成PyC的方法,通过适当选择参数,能让我们在120秒内获得直径约300 µm的棒状可重复复合材料(CF_PyC_120)。为评估这些材料,使用了多种方法,如扫描电子显微镜(SEM)、扫描透射电子显微镜(STEM)、高分辨率透射电子显微镜(HRTEM)、选区电子衍射(SAED)、拉曼光谱、X射线光电子能谱(XPS)和张力计技术,来研究它们的微观结构、结构、化学成分、表面形态和表面润湿性。在评估它们与神经组织细胞接触的适用性时,使用SH-SY5Y人神经母细胞瘤细胞系进行了细胞毒性和生物相容性评估。活力和细胞毒性测试(WST-1和LDH释放)以及细胞形态检查表明,与参考样品(铂丝)相比,CF_PyC_120复合材料表现出高生物相容性,且在所有测试材料中细胞对其表面的附着力最佳。