Suppr超能文献

细胞内尺度碳纤维植入电极及其周围神经元的植入后分析,使记录的电生理学建模成为可能。

Post-explant profiling of subcellular-scale carbon fiber intracortical electrodes and surrounding neurons enables modeling of recorded electrophysiology.

机构信息

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America.

Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States of America.

出版信息

J Neural Eng. 2023 Mar 17;20(2):026019. doi: 10.1088/1741-2552/acbf78.

Abstract

Characterizing the relationship between neuron spiking and the signals that electrodes record is vital to defining the neural circuits driving brain function and informing clinical brain-machine interface design. However, high electrode biocompatibility and precisely localizing neurons around the electrodes are critical to defining this relationship.Here, we demonstrate consistent localization of the recording site tips of subcellular-scale (6.8m diameter) carbon fiber electrodes and the positions of surrounding neurons. We implanted male rats with carbon fiber electrode arrays for 6 or 12+ weeks targeting layer V motor cortex. After explanting the arrays, we immunostained the implant site and localized putative recording site tips with subcellular-cellular resolution. We then 3D segmented neuron somata within a 50m radius from implanted tips to measure neuron positions and health and compare to healthy cortex with symmetric stereotaxic coordinates.Immunostaining of astrocyte, microglia, and neuron markers confirmed that overall tissue health was indicative of high biocompatibility near the tips. While neurons near implanted carbon fibers were stretched, their number and distribution were similar to hypothetical fibers placed in healthy contralateral brain. Such similar neuron distributions suggest that these minimally invasive electrodes demonstrate the potential to sample naturalistic neural populations. This motivated the prediction of spikes produced by nearby neurons using a simple point source model fit using recorded electrophysiology and the mean positions of the nearest neurons observed in histology. Comparing spike amplitudes suggests that the radius at which single units can be distinguished from others is near the fourth closest neuron (30.7 ± 4.6m,X-± S) in layer V motor cortex.Collectively, these data and simulations provide the first direct evidence that neuron placement in the immediate vicinity of the recording site influences how many spike clusters can be reliably identified by spike sorting.

摘要

描述神经元放电与电极记录信号之间的关系对于定义驱动大脑功能的神经回路和为临床脑机接口设计提供信息至关重要。然而,高电极生物相容性和精确地定位电极周围的神经元对于定义这种关系至关重要。在这里,我们展示了亚细胞尺度(6.8μm 直径)碳纤维电极的记录位点尖端和周围神经元位置的一致定位。我们将雄性大鼠植入针对 V 层运动皮层的碳纤维电极阵列,植入 6 或 12 周以上。在取出阵列后,我们对植入部位进行免疫染色,并以亚细胞-细胞分辨率定位疑似记录位点尖端。然后,我们在植入尖端 50μm 半径内对神经元胞体进行 3D 分割,以测量神经元位置和健康状况,并与具有对称立体坐标的健康皮层进行比较。星形胶质细胞、小胶质细胞和神经元标志物的免疫染色证实,靠近尖端的组织总体健康状况表明生物相容性高。虽然植入碳纤维附近的神经元被拉伸,但它们的数量和分布与放置在健康对侧大脑中的假设纤维相似。这种类似的神经元分布表明,这些微创电极具有采样自然神经群体的潜力。这促使我们使用记录的电生理学和组织学中观察到的最近神经元的平均位置进行简单的点源模型拟合,来预测附近神经元产生的尖峰。比较尖峰幅度表明,可从其他尖峰中区分出单个单元的半径接近 V 层运动皮层中的第四个最近神经元(30.7±4.6μm,X-±S)。总的来说,这些数据和模拟首次直接证明了记录位点附近神经元的位置会影响通过尖峰排序可靠识别的尖峰簇数量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6676/10022369/8d70c05972b0/jneacbf78f1_lr.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验