Suppr超能文献

用于选择影响[具体对象]脂肪酸谱的关键变量的多重填补套索回归

LASSO Regression with Multiple Imputations for the Selection of Key Variables Affecting the Fatty Acid Profile of .

作者信息

Andriopoulos Vasilis, Kornaros Michael

机构信息

Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece.

Institute of Circular Economy and Environment (ICEE), University of Patras' Research and Development Center, 26504 Patras, Greece.

出版信息

Mar Drugs. 2023 Sep 2;21(9):483. doi: 10.3390/md21090483.

Abstract

The marine microalga has garnered significant interest as a potential source of lipids, both for biofuel and nutrition, containing significant amounts of C16:0, C16:1, and C20:5, n-3 (EPA) fatty acids (FA). Growth parameters such as temperature, pH, light intensity, and nutrient availability play a crucial role in the fatty acid profile of microalgae, with being no exception. This study aims to identify key variables for the FA profile of grown autotrophically. To that end, the most relevant literature data were gathered and combined with our previous work as well as with novel experimental data, with 121 observations in total. The examined variables were the percentages of C14:0, C16:0, C16:1, C18:1, C18:2, and C20:5, n-3 in total FAs, their respective ratios to C16:0, and the respective content of biomass in those fatty acids in terms of ash free dry weight. Many potential predictor variables were collected, while dummy variables were introduced to account for bias in the measured variables originating from different authors as well as for other parameters. The method of multiple imputations was chosen to handle missing data, with limits based on the literature and model-based estimation, such as using the software PHREEQC and residual modelling for the estimation of pH. To eliminate unimportant predictor variables, LASSO (Least Absolute Shrinkage and Selection Operator) regression analysis with a novel definition of optimal lambda was employed. LASSO regression identified the most relevant predictors while minimizing the risk of overfitting the model. Subsequently, stepwise linear regression with interaction terms was used to further study the effects of the selected predictors. After two rounds of regression, sparse refined models were acquired, and their coefficients were evaluated based on significance. Our analysis confirms well-known effects, such as that of temperature, and it uncovers novel unreported effects of aeration, calcium, magnesium, and manganese. Of special interest is the negative effect of aeration on polyunsaturated fatty acids (PUFAs), which is possibly related to the enzymatic kinetics of fatty acid desaturation under increased oxygen concentration. These findings contribute to the optimization of the fatty acid profile of for different purposes, such as production of, high in PUFAs, food or feed, or production of, high in saturated and monounsaturated FA methyl esters (FAME), biofuels.

摘要

这种海洋微藻作为脂质的潜在来源已引起了极大关注,其脂质可用于生物燃料和营养领域,含有大量的C16:0、C16:1和C20:5,n-3(二十碳五烯酸,EPA)脂肪酸(FA)。诸如温度、pH值、光照强度和养分有效性等生长参数对微藻的脂肪酸组成起着至关重要的作用,[微藻名称]也不例外。本研究旨在确定自养生长的[微藻名称]脂肪酸组成的关键变量。为此,收集了最相关的文献数据,并将其与我们之前的工作以及新的实验数据相结合,总共121个观测值。所研究的变量包括总脂肪酸中C14:0、C16:0、C16:1、C18:1、C18:2和C20:5,n-3的百分比,它们与C16:0的各自比例,以及这些脂肪酸中以无灰干重计的生物质各自含量。收集了许多潜在的预测变量,同时引入虚拟变量以解释不同作者测量变量中的偏差以及其他参数。选择多重填补法来处理缺失数据,其限制基于文献和基于模型的估计,例如使用PHREEQC软件和残差建模来估计pH值。为了消除不重要的预测变量,采用了具有新的最优λ定义的LASSO(最小绝对收缩和选择算子)回归分析。LASSO回归确定了最相关的预测因子,同时将模型过度拟合的风险降至最低。随后,使用带有交互项的逐步线性回归来进一步研究所选预测因子的影响。经过两轮回归,获得了稀疏精炼模型,并根据显著性对其系数进行了评估。我们的分析证实了一些众所周知的影响,如温度的影响,并且还发现了曝气、钙、镁和锰的新的未报道的影响。特别值得关注的是曝气对多不饱和脂肪酸(PUFA)的负面影响,这可能与氧气浓度增加时脂肪酸去饱和的酶动力学有关。这些发现有助于针对不同目的优化[微藻名称]的脂肪酸组成,例如生产富含PUFA的食品或饲料,或生产富含饱和和单不饱和脂肪酸甲酯(FAME)的生物燃料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e863/10533012/9b5daa5b402c/marinedrugs-21-00483-g001.jpg

相似文献

2
Investigation of fatty acids accumulation in Nannochloropsis oculata for biodiesel application.
Bioresour Technol. 2012 Nov;124:421-32. doi: 10.1016/j.biortech.2012.08.009. Epub 2012 Aug 10.
3
Orange Peel Waste as Feedstock for the Production of Glycerol-Free Biodiesel by the Microalgae .
Molecules. 2023 Sep 28;28(19):6846. doi: 10.3390/molecules28196846.
4
Evaluation of colour temperatures in the cultivation of Dunaliella salina and Nannochloropsis oculata in the production of lipids and carbohydrates.
Environ Sci Pollut Res Int. 2018 Aug;25(22):21332-21340. doi: 10.1007/s11356-017-9764-0. Epub 2017 Jul 25.
5
Identification of Characteristic Fatty Acids to Quantify Triacylglycerols in Microalgae.
Front Plant Sci. 2016 Feb 22;7:162. doi: 10.3389/fpls.2016.00162. eCollection 2016.
6
Uptake of copper from acid mine drainage by the microalgae Nannochloropsis oculata.
Environ Sci Pollut Res Int. 2019 Mar;26(7):6311-6318. doi: 10.1007/s11356-018-3963-1. Epub 2019 Jan 7.
8
Biomass and lipid production from Nannochloropsis oculata growth in raceway ponds operated in sequential batch mode under greenhouse conditions.
Environ Sci Pollut Res Int. 2017 Nov;24(33):25618-25626. doi: 10.1007/s11356-016-7013-6. Epub 2016 Jun 6.

引用本文的文献

3
Lasso Model-Based Optimization of CNC/CNF/rGO Nanocomposites.
Micromachines (Basel). 2025 Mar 28;16(4):393. doi: 10.3390/mi16040393.
5
Imputation methods for mixed datasets in bioarchaeology.
Archaeol Anthropol Sci. 2024;16(11):187. doi: 10.1007/s12520-024-02078-2. Epub 2024 Oct 23.

本文引用的文献

1
Bioactive Oxylipins Profile in Marine Microalgae.
Mar Drugs. 2023 Feb 22;21(3):136. doi: 10.3390/md21030136.
2
Structured population balances to support microalgae-based processes: Review of the state-of-art and perspectives analysis.
Comput Struct Biotechnol J. 2023 Jan 31;21:1169-1188. doi: 10.1016/j.csbj.2023.01.042. eCollection 2023.
4
Biochemistry and Biotechnology of Lipid Accumulation in the Microalga .
J Agric Food Chem. 2022 Sep 21;70(37):11500-11509. doi: 10.1021/acs.jafc.2c05309. Epub 2022 Sep 9.
6
Assessment of Nitrate Removal Capacity of Two Selected Eukaryotic Green Microalgae.
Cells. 2021 Sep 20;10(9):2490. doi: 10.3390/cells10092490.
7
Regulatory mechanisms of lipid biosynthesis in microalgae.
Biol Rev Camb Philos Soc. 2021 Oct;96(5):2373-2391. doi: 10.1111/brv.12759. Epub 2021 Jun 7.
8
HDSI: High dimensional selection with interactions algorithm on feature selection and testing.
PLoS One. 2021 Feb 16;16(2):e0246159. doi: 10.1371/journal.pone.0246159. eCollection 2021.
10
Novel Insights into Phosphorus Deprivation Boosted Lipid Synthesis in the Marine Alga without Compromising Biomass Production.
J Agric Food Chem. 2020 Oct 14;68(41):11488-11502. doi: 10.1021/acs.jafc.0c04899. Epub 2020 Oct 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验