Ramezani Ghazaleh, Silva Ixchel Ocampo, Stiharu Ion, Ven Theo G M van de, Nerguizian Vahe
Department of Mechanical and Industrial Engineering, Concordia University, Montreal, QC H3G 1M8, Canada.
School of Engineering and Sciences, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico.
Micromachines (Basel). 2025 Mar 28;16(4):393. doi: 10.3390/mi16040393.
This study explores the use of citric acid and L-ascorbic acid as reducing agents in CNC/CNF/rGO nanocomposite fabrication, focusing on their effects on electrical conductivity and mechanical properties. Through comprehensive analysis, L-ascorbic acid showed superior reduction efficiency, producing rGO with enhanced electrical conductivity up to 2.5 S/m, while citric acid offered better CNC and CNF dispersion, leading to higher mechanical stability. The research employs an advanced optimization framework, integrating regression models and a neural network with 30 hidden layers, to provide insights into composition-property relationships and enable precise material tailoring. The neural network model, trained on various input variables, demonstrated excellent predictive performance, with R values exceeding 0.998. A LASSO model was also implemented to analyze variable impacts on material properties. The findings, supported by machine learning optimization, have significant implications for flexible electronics, smart packaging, and biomedical applications, paving the way for future research on scalability, long-term stability, and advanced modeling techniques for these sustainable, multifunctional materials.
本研究探索了柠檬酸和L-抗坏血酸在制备CNC/CNF/rGO纳米复合材料中作为还原剂的应用,重点关注它们对电导率和机械性能的影响。通过全面分析,L-抗坏血酸显示出更高的还原效率,制备出的rGO电导率提高至2.5 S/m,而柠檬酸能使CNC和CNF分散性更好,从而带来更高的机械稳定性。该研究采用了先进的优化框架,将回归模型和具有30个隐藏层的神经网络相结合,以深入了解成分-性能关系并实现精确的材料定制。在各种输入变量上训练的神经网络模型表现出优异的预测性能,R值超过0.998。还实施了LASSO模型来分析变量对材料性能的影响。这些由机器学习优化支持的研究结果对柔性电子、智能包装和生物医学应用具有重要意义,为未来关于这些可持续多功能材料的可扩展性、长期稳定性和先进建模技术的研究铺平了道路。