Suppr超能文献

算法重建的分子通路作为人类实体癌新一代的预后分子生物标志物

Algorithmically Reconstructed Molecular Pathways as the New Generation of Prognostic Molecular Biomarkers in Human Solid Cancers.

作者信息

Zolotovskaia Marianna, Kovalenko Maks, Pugacheva Polina, Tkachev Victor, Simonov Alexander, Sorokin Maxim, Seryakov Alexander, Garazha Andrew, Gaifullin Nurshat, Sekacheva Marina, Zakharova Galina, Buzdin Anton A

机构信息

Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia.

Omicsway Corp., Walnut, CA 91789, USA.

出版信息

Proteomes. 2023 Aug 25;11(3):26. doi: 10.3390/proteomes11030026.

Abstract

Individual gene expression and molecular pathway activation profiles were shown to be effective biomarkers in many cancers. Here, we used the human interactome model to algorithmically build 7470 molecular pathways centered around individual gene products. We assessed their associations with tumor type and survival in comparison with the previous generation of molecular pathway biomarkers (3022 "classical" pathways) and with the RNA transcripts or proteomic profiles of individual genes, for 8141 and 1117 samples, respectively. For all analytes in RNA and proteomic data, respectively, we found a total of 7441 and 7343 potential biomarker associations for gene-centric pathways, 3020 and 2950 for classical pathways, and 24,349 and 6742 for individual genes. Overall, the percentage of RNA biomarkers was statistically significantly higher for both types of pathways than for individual genes ( < 0.05). In turn, both types of pathways showed comparable performance. The percentage of cancer-type-specific biomarkers was comparable between proteomic and transcriptomic levels, but the proportion of survival biomarkers was dramatically lower for proteomic data. Thus, we conclude that pathway activation level is the advanced type of biomarker for RNA and proteomic data, and momentary algorithmic computer building of pathways is a new credible alternative to time-consuming hypothesis-driven manual pathway curation and reconstruction.

摘要

在许多癌症中,个体基因表达和分子通路激活谱被证明是有效的生物标志物。在此,我们使用人类相互作用组模型,以算法方式构建了围绕个体基因产物的7470条分子通路。我们分别针对8141个和1117个样本,将这些通路与肿瘤类型和生存率的关联,与上一代分子通路生物标志物(3022条“经典”通路)以及单个基因的RNA转录本或蛋白质组谱进行了比较。对于RNA和蛋白质组数据中的所有分析物,我们分别发现以基因为中心的通路有7441个和7343个潜在生物标志物关联,经典通路有3020个和2950个,单个基因有24349个和6742个。总体而言,两种类型的通路的RNA生物标志物百分比在统计学上均显著高于单个基因(<0.05)。反过来,两种类型的通路表现相当。蛋白质组学和转录组学水平上癌症类型特异性生物标志物的百分比相当,但蛋白质组数据中生存生物标志物的比例显著更低。因此,我们得出结论,通路激活水平是RNA和蛋白质组数据的高级生物标志物类型,通过算法即时构建通路是耗时的假设驱动的手动通路整理和重建的一种新的可靠替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf01/10535530/6b60e652e89c/proteomes-11-00026-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验