Clinic for Urology and Urological Oncology, Medical School Hanover, Hanover, Lower Saxony, Germany.
FHDW University of Applied Sciences in Hanover, Hanover, Lower Saxony, Germany.
PLoS One. 2023 Sep 27;18(9):e0292117. doi: 10.1371/journal.pone.0292117. eCollection 2023.
Clinical, time-dependent, therapeutic and diagnostic data of patients with LUTS are highly complex. To better manage these data for therapists' and researchers' we developed the application ShinyLUTS.
The statistical programming language R and the framework Shiny were used to develop a platform for data entry, monitoring of therapy and scientific data analysis. As part of a use case, ShinyLUTS was evaluated for patients with non-neurogenic LUTS who were receiving Rezum™ therapy.
The final database on patients with LUTS comprised a total of 8.118 time-dependent parameters in 11 data tables. Data entry, monitoring of therapy as well as data retrieval for scientific use, was deemed feasible, intuitive and well accepted.
The ShinyLUTs application presented here is suitable for collecting, archiving, and managing complex data on patients with LUTS. Aside from the implementation in a scientific workflow, it is suited for monitoring treatment of patients and functional results over time.
患有下尿路症状(LUTS)患者的临床、时间依赖性、治疗和诊断数据非常复杂。为了更好地管理这些数据,以便治疗师和研究人员使用,我们开发了 ShinyLUTS 应用程序。
使用统计编程语言 R 和 Shiny 框架开发了一个用于数据输入、治疗监测和科学数据分析的平台。作为用例的一部分,对接受 Rezum™治疗的非神经源性 LUTS 患者的 ShinyLUTS 进行了评估。
最终的 LUTS 患者数据库包括 11 个数据表中的总共 8118 个时间依赖性参数。数据输入、治疗监测以及科学使用的数据检索被认为是可行的、直观的和易于接受的。
这里介绍的 ShinyLUTs 应用程序适用于收集、归档和管理患有 LUTS 患者的复杂数据。除了在科学工作流程中的实现外,它还适合于随时间监测患者的治疗和功能结果。