School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom.
Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom.
Proc Natl Acad Sci U S A. 2023 Oct 3;120(40):e2221286120. doi: 10.1073/pnas.2221286120. Epub 2023 Sep 27.
AUXIN/INDOLE 3-ACETIC ACID (Aux/IAA) transcriptional repressor proteins and the TRANSPORT INHIBITOR RESISTANT 1/AUXIN SIGNALING F-BOX (TIR1/AFB) proteins to which they bind act as auxin coreceptors. While the structure of TIR1 has been solved, structural characterization of the regions of the Aux/IAA protein responsible for auxin perception has been complicated by their predicted disorder. Here, we use NMR, CD and molecular dynamics simulation to investigate the N-terminal domains of the Aux/IAA protein IAA17/AXR3. We show that despite the conformational flexibility of the region, a critical W-P bond in the core of the Aux/IAA degron motif occurs at a strikingly high (1:1) ratio of to isomers, consistent with the requirement of the conformer for the formation of the fully-docked receptor complex. We show that the N-terminal half of AXR3 is a mixture of multiple transiently structured conformations with a propensity for two predominant and distinct conformational subpopulations within the overall ensemble. These two states were modeled together with the C-terminal PB1 domain to provide the first complete simulation of an Aux/IAA. Using MD to recreate the assembly of each complex in the presence of auxin, both structural arrangements were shown to engage with the TIR1 receptor, and contact maps from the simulations match closely observations of NMR signal-decreases. Together, our results and approach provide a platform for exploring the functional significance of variation in the Aux/IAA coreceptor family and for understanding the role of intrinsic disorder in auxin signal transduction and other signaling systems.
生长素/吲哚-3-乙酸(Aux/IAA)转录阻遏蛋白和它们结合的生长素转运抑制剂抗性 1/生长素信号 F 盒(TIR1/AFB)蛋白作为生长素核心受体。虽然 TIR1 的结构已经被解决,但负责生长素感知的 Aux/IAA 蛋白区域的结构特征由于其预测的无序性而变得复杂。在这里,我们使用 NMR、CD 和分子动力学模拟来研究 Aux/IAA 蛋白 IAA17/AXR3 的 N 端结构域。我们表明,尽管该区域的构象灵活性很大,但 Aux/IAA 降解基序核心中的关键 W-P 键以惊人的高(1:1)比例出现,这与 构象对于形成完全对接的受体复合物的要求一致。我们表明,AXR3 的 N 端一半是多种瞬态结构构象的混合物,在整个整体中具有两个主要且不同构象亚群的倾向。这两种状态与 C 端 PB1 结构域一起建模,提供了第一个完整的 Aux/IAA 模拟。使用 MD 来重建每种在生长素存在下组装的复合物,这两种结构排列都被证明与 TIR1 受体结合,并且模拟的接触图与 NMR 信号降低的观察结果非常吻合。总之,我们的结果和方法为探索 Aux/IAA 核心受体家族中变异的功能意义以及理解内在无序在生长素信号转导和其他信号系统中的作用提供了一个平台。