Suppr超能文献

使用 III 期 NSABP B-35 试验中的患者报告结局数据进行治疗中断的动态风险预测。

Dynamic Risk Prediction of Treatment Discontinuation Using Patient-Reported Outcomes Data in the Phase III NSABP B-35 Trial.

机构信息

Cedars-Sinai Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California.

University of Michigan Rogel Cancer Center, Ann Arbor, Michigan.

出版信息

Cancer Prev Res (Phila). 2023 Nov 1;16(11):631-639. doi: 10.1158/1940-6207.CAPR-23-0216.

Abstract

UNLABELLED

Predicting an individual's risk of treatment discontinuation is critical for the implementation of precision chemoprevention. We developed partly conditional survival models to predict discontinuation of tamoxifen or anastrozole using patient-reported outcome (PRO) data from postmenopausal women with ductal carcinoma in situ enrolled in the NSABP B-35 clinical trial. In a secondary analysis of the NSABP B-35 clinical trial PRO data, we proposed two models for treatment discontinuation within each treatment arm (anastrozole or tamoxifen treated patients) using partly conditional Cox-type models with time-dependent covariates. A 70/30 split of the sample was used for the training and validation datasets. The predictive performance of the models was evaluated using calibration and discrimination measures based on the Brier score and AUC from time-dependent ROC curves. The predictive models stratified high-risk versus low-risk early discontinuation at a 6-month horizon. For anastrozole-treated patients, predictive factors included baseline body mass index (BMI) and longitudinal patient-reported symptoms such as insomnia, joint pain, hot flashes, headaches, gynecologic symptoms, and vaginal discharge, all collected up to 12 months [Brier score, 0.039; AUC, 0.76; 95% confidence interval (CI), 0.57-0.95]. As for tamoxifen-treated patients, predictive factors included baseline BMI, and time-dependent covariates: cognitive problems, feelings of happiness, calmness, weight problems, and pain (Brier score, 0.032; AUC, 0.78; 95% CI, 0.65-0.91). A real-time calculator based on these models was developed in Shiny to create a web-based application with a future goal to aid healthcare professionals in decision-making.

PREVENTION RELEVANCE

The dynamic prediction provided by partly conditional models offers valuable insights into the treatment discontinuation risks using PRO data collected over time from clinical trial participants. This tool may benefit healthcare professionals in identifying patients at high risk of premature treatment discontinuation and support interventions to prevent potential discontinuation.

摘要

未加标签

预测个体停止治疗的风险对于精准化学预防的实施至关重要。我们使用来自绝经后女性的患者报告结局(PRO)数据,建立部分条件生存模型来预测接受他莫昔芬或阿那曲唑治疗的导管原位癌患者的停药风险,这些患者来自 NSABP B-35 临床试验。在 NSABP B-35 临床试验 PRO 数据的二次分析中,我们提出了两种模型,用于在每个治疗臂(阿那曲唑或他莫昔芬治疗的患者)中治疗停止,使用具有时间依赖性协变量的部分条件 Cox 型模型。将样本的 70/30 分割用于训练和验证数据集。模型的预测性能使用基于时间依赖性 ROC 曲线的 Brier 评分和 AUC 的校准和区分度量来评估。该预测模型对 6 个月时的高风险和低风险早期停药进行分层。对于接受阿那曲唑治疗的患者,预测因素包括基线体重指数(BMI)和纵向患者报告的症状,如失眠、关节痛、热潮红、头痛、妇科症状和阴道分泌物,所有症状均在 12 个月内收集[Brier 评分,0.039;AUC,0.76;95%置信区间(CI),0.57-0.95]。对于接受他莫昔芬治疗的患者,预测因素包括基线 BMI 和时间依赖性协变量:认知问题、幸福感、平静感、体重问题和疼痛(Brier 评分,0.032;AUC,0.78;95% CI,0.65-0.91)。基于这些模型开发了一个实时计算器,在 Shiny 中创建了一个基于网络的应用程序,其未来目标是帮助医疗保健专业人员进行决策。

预防相关性

部分条件模型提供的动态预测提供了使用 PRO 数据从临床试验参与者随时间收集的治疗停药风险的宝贵见解。该工具可能使医疗保健专业人员受益,他们可以识别出过早停止治疗的高风险患者,并支持干预措施以防止潜在的停药。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c46/10618646/b3e48911b7b5/631fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验