Suppr超能文献

量化具有时间依存性协变量的删失生存数据预后模型的预测性能。

Quantifying the predictive performance of prognostic models for censored survival data with time-dependent covariates.

作者信息

Schoop R, Graf E, Schumacher M

机构信息

Institute of Medical Biometry and Medical Informatics, University Medical Center Freiburg, Germany.

出版信息

Biometrics. 2008 Jun;64(2):603-10. doi: 10.1111/j.1541-0420.2007.00889.x. Epub 2007 Aug 30.

Abstract

Prognostic models in survival analysis typically aim to describe the association between patient covariates and future outcomes. More recently, efforts have been made to include covariate information that is updated over time. However, there exists as yet no standard approach to assess the predictive accuracy of such updated predictions. In this article, proposals from the literature are discussed and a conditional loss function approach is suggested, illustrated by a publicly available data set.

摘要

生存分析中的预后模型通常旨在描述患者协变量与未来结局之间的关联。最近,人们已努力纳入随时间更新的协变量信息。然而,目前尚无评估此类更新预测的预测准确性的标准方法。在本文中,我们讨论了文献中的提议,并提出了一种条件损失函数方法,并通过一个公开可用的数据集进行说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验