Suppr超能文献

运用失效模式与效应分析、模糊逻辑和机器学习提高医院消毒过程质量:三级牙科中心的经验

Improving the quality of hospital sterilization process using failure modes and effects analysis, fuzzy logic, and machine learning: experience in tertiary dental centre.

作者信息

En-Naaoui Amine, Aguezzoul Aicha, Kaicer Mohammed

机构信息

Quality and Medical Affairs, National Institute of Oncology, Ibn Sina University Hospital Centre, Rabat 6527, Morocco.

Department of Mathematics, Ibn Tofail University, Kenitra 6527, Morocco.

出版信息

Int J Qual Health Care. 2023 Oct 19;35(4). doi: 10.1093/intqhc/mzad078.

Abstract

Activities practiced in the hospital generate several types of risks. Therefore, performing the risk assessment is one of the quality improvement keys in the healthcare sector. For this reason, healthcare managers need to design and perform efficient risk assessment processes. Failure modes and effects analysis (FMEA) is one of the most used risk assessment methods. The FMEA is a proactive technique consisting of the evaluation of failure modes associated with a studied process using three factors: occurrence, non-detection, and severity, in order to obtain the risk priority number using fuzzy logic approach and machine learning algorithms, namely the support vector machine and the k-nearest neighbours. The proposed model is applied in the case of the central sterilization unit of a tertiary national reference centre of dental treatment, where its efficiency is evaluated compared to the classical approach. These comparisons are based on expert advice and machine learning performance metrics. Our developed model proved high effectiveness throughout the results of the expert's vote (she agrees with 96% fuzzy-FMEA results against 6% with classical FMEA results). Furthermore, the machine learning metrics show a high level of accuracy in both training data (best rate is 96%) and testing data (90%). This study represents the first study that aims to perform artificial intelligence approach to risk management in the Moroccan healthcare sector. The perspective of this study is to promote the application of the artificial intelligence in Moroccan health management, especially in the field of quality and safety management.

摘要

医院开展的活动会产生多种风险。因此,进行风险评估是医疗保健部门质量改进的关键之一。出于这个原因,医疗保健管理人员需要设计并执行高效的风险评估流程。失效模式与效应分析(FMEA)是最常用的风险评估方法之一。FMEA是一种主动式技术,包括使用三个因素(发生度、未被检测度和严重度)对与所研究流程相关的失效模式进行评估,以便使用模糊逻辑方法和机器学习算法(即支持向量机和k近邻算法)获得风险优先数。所提出的模型应用于一家国家三级牙科治疗参考中心的中央消毒部门,在该案例中,与传统方法相比评估了其效率。这些比较基于专家建议和机器学习性能指标。我们开发的模型在专家投票结果中证明具有高效性(她认同模糊FMEA结果的96%,而传统FMEA结果仅为6%)。此外,机器学习指标在训练数据(最佳比率为96%)和测试数据(90%)中均显示出较高的准确率。本研究是旨在对摩洛哥医疗保健部门风险管理采用人工智能方法的首项研究。本研究的展望是促进人工智能在摩洛哥健康管理中的应用,尤其是在质量和安全管理领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验