Chemical Engineering Department, National Cheng Kung University, Taiwan.
Chemical Engineering Department, National Cheng Kung University, Taiwan.
Chemosphere. 2023 Dec;343:140268. doi: 10.1016/j.chemosphere.2023.140268. Epub 2023 Sep 25.
This study aims to explore the reusability of wastewater treatment by-product for photo-Fenton process to treat an organic pollutant model. The optimal condition, reactive oxygen species (ROS), and kinetic approach in photo-Fenton process was discussed. The Metal oxide crystal pellets from are a by-product of the Fluidized-Bed Crystallization (FBC) process and can be used as a catalyst in the Photo-Fenton process. Electroplating wastewater containing iron and copper was treated via the FBC process using granulated Al(OH) as carrier seeds. The binary oxide of FeOOH and CuO on the Al(OH) surface (FeCu@Al(OH)) was identified as the FBC by-product after characterization using FTIR and XPS analysis. In the photo-Fenton process, visible light from a fluorescence lamp with a wavelength of 400-610 nm was chosen as an irradiation source. Oxalic acid was added as chelating agent to form photosensitive iron oxalate species and hydrogen peroxide was applied as oxidant to generate active radical to decolorize and mineralize RB5 synthesized solution (100 mg/L). The operating conditions including the oxalic acid to pollutant ratio ([OA]/[RB5]) of 4.5-13.0, reaction pH (pHr) of 3-7 and initial to theoretical hydrogen peroxide molar ratio [HO]/[ HO] of 35%-120% were optimized. Under the optimal conditions, pH = 5.0; [HO]/[RB5] at 75% stoichiometric and [OA]/[RB5] = 9, the RB5 is almost completely decolorized after 210 min of operation and the mineralization efficiency is 58%. The contribution of •OH, O, and O to the Photo-Fenton system was determined using ESR analysis with the addition of DMPO and TEMP as spin trap agents. The kinetic analysis reveals the observed rate constants k, k and k from fitting are 0.0120, 0.0054 and 0.0001 Ms, respectively.
本研究旨在探索废水处理副产物在光芬顿工艺中处理有机污染物模型的再利用。讨论了光芬顿工艺中的最佳条件、活性氧物种 (ROS) 和动力学方法。金属氧化物晶体球是流化床结晶 (FBC) 过程的副产物,可以用作光芬顿工艺中的催化剂。使用颗粒状 Al(OH)3 作为载体种子,通过 FBC 工艺处理含铁和铜的电镀废水。使用 FTIR 和 XPS 分析对产物进行表征,确定 FBC 副产物为 Al(OH)3 表面上的 FeOOH 和 CuO 二元氧化物 (FeCu@Al(OH)3)。在光芬顿工艺中,选择波长为 400-610nm 的荧光灯作为辐照源。添加草酸作为螯合剂形成光敏感的草酸铁物种,并使用过氧化氢作为氧化剂生成活性自由基,以脱色和矿化合成的 RB5 溶液(100mg/L)。优化了操作条件,包括 4.5-13.0 的草酸与污染物摩尔比 ([OA]/[RB5])、反应 pH (pHr) 为 3-7 和初始与理论过氧化氢摩尔比 [HO]/[HO]为 35%-120%。在最佳条件下,pH=5.0;[HO]/[RB5]为 75%化学计量比,[OA]/[RB5]为 9,RB5 在 210min 后几乎完全脱色,矿化效率为 58%。通过添加 DMPO 和 TEMP 作为自旋捕获剂,使用 ESR 分析确定了光芬顿体系中 •OH、O2 和 O 的贡献。动力学分析表明,拟合得到的观察速率常数 k、k 和 k 分别为 0.0120、0.0054 和 0.0001 Ms。