Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
Departamento de Química Analítica, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain.
Sci Total Environ. 2024 Jan 1;906:167376. doi: 10.1016/j.scitotenv.2023.167376. Epub 2023 Sep 25.
To improve the effectiveness and durability of wastewater treatment technologies, researchers are showing a growing interest in 3D printing technology. This technology has attracted significant interest owing to its ability to fabricate challenging complex geometries using different material compositions. This manuscript is focused on the development of 3D monoliths from noncommercial filaments, i.e., a powder blend of iron oxide and polylactic acid (PLA) at 15 wt% of the former. Different monolith designs have been prepared to improve the fluid dynamics of the process, so a simple cylinder (15-FeO@PLA) and a cylinder with double the length and an internal mesh (15-FeO@PLA-DM) were used. These monoliths were characterized by Scanning electron microscopy (SEM), Differential scanning calorimetry (DSC) and Mössbauer spectroscopy, then used for water-based ofloxacin degradation in a continuous down-up flow configuration. Additionally, computational fluid dynamics simulations were performed to estimate the degradation rate constants and analyze the distribution of fluid velocity and pollutant concentration along the 15-FeO@PLA-reactor. The oxidant dose was also optimized to develop the highest degradation rate. The degradation of the target pollutant for those monoliths was 55 and 82 % under optimized conditions. In addition, the 15-FeO@PLA-DM monolith was operated for long term experiments, keeping the degradation performance at a good 67 % for up to 120 h. Finally a fixed-bed reactor was mounted with printed pellets of the mixture (15:85), FeO:PLA, after being ground in a range of 125-200 μm. Under this setup configuration, we observed the total degradation of ofloxacin. 3D printing technology is cheap, reproducible and time saving in the development of supported catalysts in comparison with conventional deposition techniques. Moreover, the leaching of active sites on streams was largely diminished. In fact under continuous operation the leached Fe concentration is below 0.1 ppm, corroborating the good adhesion of the catalyst in the PLA support.
为了提高废水处理技术的效率和耐久性,研究人员越来越关注 3D 打印技术。由于其能够使用不同的材料组合制造具有挑战性的复杂几何形状的能力,这项技术引起了人们的极大兴趣。本文专注于使用非商业长丝(即铁氧化物和聚乳酸(PLA)的粉末混合物,前者占 15wt%)开发 3D 整体式构件。已经制备了不同的整体式构件设计以改善过程的流体动力学,因此使用了简单的圆柱体(15-FeO@PLA)和长度加倍且内部有网格的圆柱体(15-FeO@PLA-DM)。通过扫描电子显微镜(SEM)、差示扫描量热法(DSC)和穆斯堡尔光谱对这些整体式构件进行了表征,然后将其用于连续上下流动配置中的水基氧氟沙星降解。此外,还进行了计算流体动力学模拟以估计降解速率常数,并分析沿 15-FeO@PLA 反应器的流体速度和污染物浓度的分布。还优化了氧化剂剂量以开发最高的降解速率。在优化条件下,对于这些整体式构件,目标污染物的降解率为 55%和 82%。此外,15-FeO@PLA-DM 整体式构件进行了长期实验,在长达 120 小时的时间内保持良好的 67%的降解性能。最后,使用混合物(15:85)、FeO:PLA 的打印颗粒(在 125-200μm 范围内研磨)安装了固定床反应器。在这种设置配置下,我们观察到氧氟沙星的完全降解。与传统的沉积技术相比,3D 打印技术在开发负载型催化剂时成本低、可重现且节省时间。此外,活性位点在流中的浸出大大减少。事实上,在连续运行下,浸出的 Fe 浓度低于 0.1ppm,这证实了催化剂在 PLA 载体中的良好粘附性。