Suppr超能文献

熔融沉积成型(三维打印)的无定形磷酸镁/聚乳酸大孔生物复合支架。

Fused Filament Fabrication (Three-Dimensional Printing) of Amorphous Magnesium Phosphate/Polylactic Acid Macroporous Biocomposite Scaffolds.

机构信息

Department of Bioengineering, The University of Toledo, Toledo, Ohio 43606, United States.

Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, Ohio 43606, United States.

出版信息

ACS Appl Bio Mater. 2021 Apr 19;4(4):3276-3286. doi: 10.1021/acsabm.0c01620. Epub 2021 Apr 6.

Abstract

The ultimate goal of this paper is to develop novel ceramic-polymer-based biocomposite orthopedic scaffolds with the help of additive manufacturing. Specifically, we incorporate a bioceramic known as amorphous magnesium phosphate (AMP) into polylactic acid (PLA) with the help of the melt-blending technique. Magnesium phosphate (MgP) was chosen as the bioactive component as previous studies have confirmed its favorable biomaterial properties, especially in orthopedics. Special care was taken to develop constant diameter AMP-PLA composite filaments, which would serve as feedstock for a fused filament fabrication (FFF)-based three-dimensional (3D) printer. Before the filaments were used for FFF, a thorough set of characterization protocols comprising of phase analysis, microstructure evaluations, thermal analysis, rheological analysis, and degradation determinations was performed on the biocomposites. Scanning electron microscopy (SEM) results confirmed a homogenous dispersion of AMP particles in the PLA matrix. Rheological studies demonstrated good printability behavior of the AMP-PLA filaments. degradation studies indicated a faster degradation rate in the case of AMP-PLA filaments as compared to the single phase PLA filaments. Subsequently, the filaments were fed into an FFF setup, and tensile bars and design-specific macroporous AMP-PLA scaffolds were printed. The biocomposite exhibited favorable mechanical properties. Furthermore, cytocompatibility results revealed higher pre-osteoblast cell attachment and proliferation on AMP-PLA scaffolds as compared to single-phase PLA scaffolds. Altogether, this study provides a proof of concept that design-specific bioactive AMP-PLA biocomposite scaffolds fabricated by FFF can be potential candidates as medical implants in orthopedics.

摘要

本文的最终目标是借助增材制造技术,开发新型陶瓷-聚合物基生物复合材料骨科植入物支架。具体而言,我们通过熔融共混技术将一种名为无定形磷酸镁(AMP)的生物陶瓷与聚乳酸(PLA)结合。选择磷酸镁(MgP)作为生物活性成分,因为之前的研究已经证实了其有利的生物材料特性,特别是在骨科方面。特别注意开发具有恒定直径的 AMP-PLA 复合长丝,这些长丝将作为熔融沉积成型(FFF)基三维(3D)打印机的原料。在将长丝用于 FFF 之前,对生物复合材料进行了一系列彻底的特性分析,包括相分析、微观结构评估、热分析、流变分析和降解测定。扫描电子显微镜(SEM)结果证实了 AMP 颗粒在 PLA 基体中的均匀分散。流变学研究表明,AMP-PLA 长丝具有良好的可打印性能。降解研究表明,与单相 PLA 长丝相比,AMP-PLA 长丝的降解速度更快。随后,将长丝送入 FFF 设备中,打印出拉伸棒和特定设计的大孔 AMP-PLA 支架。生物复合材料表现出良好的机械性能。此外,细胞相容性结果表明,与单相 PLA 支架相比,AMP-PLA 支架上的前成骨细胞附着和增殖更高。总的来说,这项研究提供了一个概念验证,即通过 FFF 制造的特定设计的生物活性 AMP-PLA 生物复合材料支架可以成为骨科医学植入物的潜在候选材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验