Mutunga Eva, D'Angelo Christopher, Tyagi Pawan
Mechanical Engineering, Center for Nanotechnology Research and Education (CNRE), University of the District of Columbia, 4200 Connecticut Ave. NW, Washington, DC, 20008, USA.
Sci Rep. 2023 Sep 27;13(1):16201. doi: 10.1038/s41598-023-42731-9.
Understanding the magnetic molecules' interaction with different combinations of metal electrodes is vital to advancing the molecular spintronics field. This paper describes experimental and theoretical understanding showing how paramagnetic single-molecule magnet (SMM) catalyzes long-range effects on metal electrodes and, in that process, loses its basic magnetic properties. For the first time, our Monte Carlo simulations, verified for consistency with regards to experimental studies, discuss the properties of the whole device and a generic paramagnetic molecule analog (GPMA) connected to the combinations of ferromagnet-ferromagnet, ferromagnet-paramagnet, and ferromagnet-antiferromagnet metal electrodes. We studied the magnetic moment vs. magnetic field of GPMA exchange coupled between two metal electrodes along the exposed side edge of cross junction-shaped magnetic tunnel junction (MTJ). We also studied GPMA-metal electrode interfaces' magnetic moment vs. magnetic field response. We have also found that the MTJ dimension impacted the molecule response. This study suggests that SMM spin at the MTJ exposed sides offers a unique and high-yield method of connecting molecules to virtually endless magnetic and nonmagnetic electrodes and observing unprecedented phenomena in the molecular spintronics field.
了解磁性分子与不同金属电极组合的相互作用对于推动分子自旋电子学领域的发展至关重要。本文描述了实验和理论上的认识,展示了顺磁性单分子磁体(SMM)如何催化对金属电极的远程效应,并在此过程中失去其基本磁性。我们的蒙特卡罗模拟首次针对与实验研究的一致性进行了验证,讨论了连接铁磁体 - 铁磁体、铁磁体 - 顺磁体和铁磁体 - 反铁磁体金属电极组合的整个器件以及通用顺磁性分子类似物(GPMA)的特性。我们研究了沿交叉结形磁隧道结(MTJ)暴露侧边缘在两个金属电极之间交换耦合的GPMA的磁矩与磁场的关系。我们还研究了GPMA - 金属电极界面的磁矩与磁场响应。我们还发现MTJ尺寸影响分子响应。这项研究表明,MTJ暴露侧的SMM自旋提供了一种独特且高产的方法,可将分子连接到几乎无限的磁性和非磁性电极,并观察分子自旋电子学领域前所未有的现象。