Grizzle Andrew, D'Angelo Christopher, Martínez-Lillo José, Tyagi Pawan
Center for Nanotechnology Research and Education, Mechanical Engineering, University of the District of Columbia Washington DC-20008 USA
Instituto de Ciencia Molecular (ICMol), Universitat de València c/ Catedrático José Beltrán 2 Paterna València 46980 Spain.
RSC Adv. 2021 Sep 30;11(51):32275-32285. doi: 10.1039/d1ra05473b. eCollection 2021 Sep 27.
Paramagnetic single-molecule magnets (SMMs) interacting with the ferromagnetic electrodes of a magnetic tunnel junction (MTJ) produce a new system. The properties and future scope of new systems differ dramatically from the properties of isolated molecules and ferromagnets. However, it is unknown how far deep in the ferromagnetic electrode the impact of the paramagnetic molecule and ferromagnet interactions can travel for various levels of molecular spin states. Our prior experimental studies showed two types of paramagnetic SMMs, the hexanuclear Mn and octanuclear Fe-Ni molecular complexes, covalently bonded to ferromagnets produced unprecedented strong antiferromagnetic coupling between two ferromagnets at room temperature leading to a number of intriguing observations (P. Tyagi, , , 2019, , 188-194. P. Tyagi, , , 2020, , (22), 13006-13015). This paper reports a Monte Carlo Simulations (MCS) study focusing on the impact of the molecular spin state on a cross junction shaped MTJ based molecular spintronics device (MTJMSD). Our MCS study focused on the Heisenberg model of MTJMSD and investigated the impact of various molecular coupling strengths, thermal energy, and molecular spin states. To gauge the impact of the molecular spin state on the region of ferromagnetic electrodes, we examined the spatial distribution of molecule-ferromagnet correlated phases. Our MCS study shows that under a strong coupling regime, the molecular spin state should be ∼30% of the ferromagnetic electrode's atomic spins to create long-range correlated phases.
顺磁性单分子磁体(SMMs)与磁性隧道结(MTJ)的铁磁电极相互作用产生了一个新系统。新系统的性质和未来发展范围与孤立分子和铁磁体的性质有很大不同。然而,对于顺磁性分子与铁磁体相互作用的影响在铁磁电极中能传播多深,以及不同分子自旋态水平下的情况,目前尚不清楚。我们之前的实验研究表明,两种类型的顺磁性SMMs,即六核锰和八核铁 - 镍分子配合物,与铁磁体共价键合,在室温下在两个铁磁体之间产生了前所未有的强反铁磁耦合,从而导致了许多有趣的观察结果(P. Tyagi, , ,2019, ,188 - 194。P. Tyagi, , ,2020, ,(22),13006 - 13015)。本文报道了一项蒙特卡罗模拟(MCS)研究,重点关注分子自旋态对基于交叉结形状的MTJ分子自旋电子器件(MTJMSD)的影响。我们的MCS研究聚焦于MTJMSD的海森堡模型,并研究了各种分子耦合强度、热能和分子自旋态的影响。为了评估分子自旋态对铁磁电极区域的影响,我们研究了分子 - 铁磁体相关相的空间分布。我们的MCS研究表明,在强耦合 regime下,分子自旋态应为铁磁电极原子自旋的约30%,以产生长程相关相。