Suppr超能文献

使用谷歌街景图像可以测量预测户外活动的物理环境特征。

Physical environment features that predict outdoor active play can be measured using Google Street View images.

机构信息

Department of Public Health Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada.

Presage Group, Inc, 3365 Harvester Road, Suite 206, Burlington, ON, L7N 3N2, Canada.

出版信息

Int J Health Geogr. 2023 Sep 28;22(1):26. doi: 10.1186/s12942-023-00346-3.

Abstract

BACKGROUND

Childrens' outdoor active play is an important part of their development. Play behaviour can be predicted by a variety of physical and social environmental features. Some of these features are difficult to measure with traditional data sources.

METHODS

This study investigated the viability of a machine learning method using Google Street View images for measurement of these environmental features. Models to measure natural features, pedestrian traffic, vehicle traffic, bicycle traffic, traffic signals, and sidewalks were developed in one city and tested in another.

RESULTS

The models performed well for features that are time invariant, but poorly for features that change over time, especially when tested outside of the context where they were initially trained.

CONCLUSION

This method provides a potential automated data source for the development of prediction models for a variety of physical and social environment features using publicly accessible street view images.

摘要

背景

儿童户外活动是其发展的重要组成部分。游戏行为可以通过多种物理和社会环境特征来预测。其中一些特征很难用传统数据源来衡量。

方法

本研究调查了使用谷歌街景图像进行这些环境特征测量的机器学习方法的可行性。在一个城市中开发了用于测量自然特征、行人和车辆交通、自行车交通、交通信号和人行道的模型,并在另一个城市进行了测试。

结果

这些模型对于不变的特征表现良好,但对于随时间变化的特征表现不佳,尤其是在初始训练之外的环境中进行测试时。

结论

这种方法为使用公共可访问的街景图像开发各种物理和社会环境特征的预测模型提供了一种潜在的自动数据来源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f2a/10536757/4a5fa65b567b/12942_2023_346_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验