Suppr超能文献

针对不可忽略的缺失机制,在模式图框架中进行可评估和可解释的敏感性分析。

Assessable and interpretable sensitivity analysis in the pattern graph framework for nonignorable missingness mechanisms.

作者信息

Zamanian Alireza, Ahmidi Narges, Drton Mathias

机构信息

TUM School of Computation, Information and Technology, Department of Computer Science, Technical University of Munich, Munich, Germany.

Department of Reasoned AI Decisions, Fraunhofer Institute for Cognitive Systems IKS, Munich, Germany.

出版信息

Stat Med. 2023 Dec 20;42(29):5419-5450. doi: 10.1002/sim.9920. Epub 2023 Sep 27.

Abstract

The pattern graph framework solves a wide range of missing data problems with nonignorable mechanisms. However, it faces two challenges of assessability and interpretability, particularly important in safety-critical problems such as clinical diagnosis: (i) How can one assess the validity of the framework's a priori assumption and make necessary adjustments to accommodate known information about the problem? (ii) How can one interpret the process of exponential tilting used for sensitivity analysis in the pattern graph framework and choose the tilt perturbations based on meaningful real-world quantities? In this paper, we introduce Informed Sensitivity Analysis, an extension of the pattern graph framework that enables us to incorporate substantive knowledge about the missingness mechanism into the pattern graph framework. Our extension allows us to examine the validity of assumptions underlying pattern graphs and interpret sensitivity analysis results in terms of realistic problem characteristics. We apply our method to a prevalent nonignorable missing data scenario in clinical research. We validate and compare our method's results of our method with a number of widely-used missing data methods, including Unweighted CCA, KNN Imputer, MICE, and MissForest. The validation is done using both boot-strapped simulated experiments as well as real-world clinical observations in the MIMIC-III public dataset.

摘要

模式图框架解决了一系列具有不可忽视机制的缺失数据问题。然而,它面临着可评估性和可解释性这两个挑战,在诸如临床诊断等安全关键问题中尤为重要:(i)如何评估框架先验假设的有效性,并进行必要调整以适应有关问题的已知信息?(ii)如何解释模式图框架中用于敏感性分析的指数倾斜过程,并根据有意义的现实世界数量选择倾斜扰动?在本文中,我们引入了知情敏感性分析,这是模式图框架的一种扩展,使我们能够将关于缺失机制的实质性知识纳入模式图框架。我们的扩展使我们能够检验模式图基础假设的有效性,并根据现实问题特征解释敏感性分析结果。我们将我们的方法应用于临床研究中一种普遍存在的不可忽视的缺失数据场景。我们将我们方法的结果与一些广泛使用的缺失数据方法(包括未加权CCA、KNN插补器、MICE和MissForest)进行验证和比较。验证使用了自举模拟实验以及MIMIC-III公共数据集中的现实世界临床观察。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验