文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

生物黑客助力健康——利用代谢生物化学最大化健康寿命。

Bio-Hacking Better Health-Leveraging Metabolic Biochemistry to Maximise Healthspan.

作者信息

Cooper Isabella D, Kyriakidou Yvoni, Petagine Lucy, Edwards Kurtis, Elliott Bradley T

机构信息

Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK.

出版信息

Antioxidants (Basel). 2023 Sep 11;12(9):1749. doi: 10.3390/antiox12091749.


DOI:10.3390/antiox12091749
PMID:37760052
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10525476/
Abstract

In the pursuit of longevity and healthspan, we are challenged with first overcoming chronic diseases of ageing: cardiovascular disease, hypertension, cancer, dementias, type 2 diabetes mellitus. These are hyperinsulinaemia diseases presented in different tissue types. Hyperinsulinaemia reduces endogenous antioxidants, via increased consumption and reduced synthesis. Hyperinsulinaemia enforces glucose fuelling, consuming 4 NAD to produce 2 acetyl moieties; beta-oxidation, ketolysis and acetoacetate consume 2, 1 and 0, respectively. This decreases sirtuin, PARPs and oxidative management capacity, leaving reactive oxygen species to diffuse to the cytosol, upregulating aerobic glycolysis, NF-kB and cell division signalling. Also, oxidising cardiolipin, reducing oxidative phosphorylation (OXPHOS) and apoptosis ability; driving a tumourigenic phenotype. Over time, increasing senescent/pathological cell populations occurs, increasing morbidity and mortality. Beta-hydroxybutyrate, an antioxidant, metabolite and signalling molecule, increases synthesis of antioxidants via preserving NAD availability and enhancing OXPHOS capacity. Fasting and ketogenic diets increase ketogenesis concurrently decreasing insulin secretion and demand; hyperinsulinaemia inhibits ketogenesis. Lifestyles that maintain lower insulin levels decrease antioxidant catabolism, additionally increasing their synthesis, improving oxidative stress management and mitochondrial function and, subsequently, producing healthier cells. This supports tissue and organ health, leading to a better healthspan, the first challenge that must be overcome in the pursuit of youthful longevity.

摘要

在追求长寿和健康寿命的过程中,我们首先面临着攻克衰老相关慢性疾病的挑战:心血管疾病、高血压、癌症、痴呆症、2型糖尿病。这些都是在不同组织类型中出现的高胰岛素血症疾病。高胰岛素血症通过增加消耗和减少合成来降低内源性抗氧化剂。高胰岛素血症促使葡萄糖供能,消耗4个烟酰胺腺嘌呤二核苷酸(NAD)来产生2个乙酰基;β-氧化、酮体分解和乙酰乙酸分别消耗2个、1个和0个NAD。这会降低沉默调节蛋白、聚(ADP-核糖)聚合酶(PARP)和氧化管理能力,使活性氧扩散到细胞质中,上调有氧糖酵解、核因子-κB(NF-κB)和细胞分裂信号。此外,氧化心磷脂,降低氧化磷酸化(OXPHOS)和细胞凋亡能力;驱动肿瘤发生表型。随着时间的推移,衰老/病理细胞群体增加,发病率和死亡率上升。β-羟基丁酸是一种抗氧化剂、代谢物和信号分子,通过保持NAD的可用性和增强OXPHOS能力来增加抗氧化剂的合成。禁食和生酮饮食会增加酮体生成,同时减少胰岛素分泌和需求;高胰岛素血症会抑制酮体生成。维持较低胰岛素水平的生活方式会减少抗氧化剂的分解代谢,此外还会增加其合成,改善氧化应激管理和线粒体功能,进而产生更健康的细胞。这有助于组织和器官健康,带来更好的健康寿命,这是在追求年轻长寿过程中必须首先克服的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/10525476/fc28a364af17/antioxidants-12-01749-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/10525476/64278e5fee13/antioxidants-12-01749-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/10525476/fc28a364af17/antioxidants-12-01749-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/10525476/64278e5fee13/antioxidants-12-01749-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/10525476/fc28a364af17/antioxidants-12-01749-g002.jpg

相似文献

[1]
Bio-Hacking Better Health-Leveraging Metabolic Biochemistry to Maximise Healthspan.

Antioxidants (Basel). 2023-9-11

[2]
Rethinking Fragility Fractures in Type 2 Diabetes: The Link between Hyperinsulinaemia and Osteofragilitas.

Biomedicines. 2021-9-6

[3]
Metabolic Phenotypes and Step by Step Evolution of Type 2 Diabetes: A New Paradigm.

Biomedicines. 2021-7-9

[4]
Relationships between hyperinsulinaemia, magnesium, vitamin D, thrombosis and COVID-19: rationale for clinical management.

Open Heart. 2020-9

[5]
Mitochondrial biogenesis: pharmacological approaches.

Curr Pharm Des. 2014

[6]
Nrf2 Activation Protects Mouse Beta Cells from Glucolipotoxicity by Restoring Mitochondrial Function and Physiological Redox Balance.

Oxid Med Cell Longev. 2019-11-11

[7]
The Computational Acid-Base Chemistry of Hepatic Ketoacidosis.

Metabolites. 2023-6-28

[8]
Anisoosmostic liver perfusion: redox shifts and modulation of alpha-ketoisocaproate and glycine metabolism.

Biol Chem Hoppe Seyler. 1992-8

[9]
Hepatic AMPK signaling dynamic activation in response to REDOX balance are sentinel biomarkers of exercise and antioxidant intervention to improve blood glucose control.

Elife. 2022-9-26

[10]
Why the diabetic heart is energy inefficient: a ketogenesis and ketolysis perspective.

Am J Physiol Heart Circ Physiol. 2021-10-1

引用本文的文献

[1]
Oxidative stress in a cellular model of alcohol-related liver disease: protection using curcumin nanoformulations.

Sci Rep. 2025-3-5

[2]
The Biomarkers in Extreme Longevity: Insights Gained from Metabolomics and Proteomics.

Int J Med Sci. 2024

[3]
Ketosis Suppression and Ageing (KetoSAge) Part 2: The Effect of Suppressing Ketosis on Biomarkers Associated with Ageing, HOMA-IR, Leptin, Osteocalcin, and GLP-1, in Healthy Females.

Biomedicines. 2024-7-12

[4]
Ketosis Suppression and Ageing (KetoSAge): The Effects of Suppressing Ketosis in Long Term Keto-Adapted Non-Athletic Females.

Int J Mol Sci. 2023-10-26

[5]
Mechanistic Intimate Insights into the Role of Hydrogen Sulfide in Alzheimer's Disease: A Recent Systematic Review.

Int J Mol Sci. 2023-10-23

本文引用的文献

[1]
Innate immune cell-intrinsic ketogenesis is dispensable for organismal metabolism and age-related inflammation.

J Biol Chem. 2023-3

[2]
Potential harms of supplementation with high doses of antioxidants in athletes.

J Exerc Sci Fit. 2022-10

[3]
An explanation for negligible senescence in animals.

Ecol Evol. 2022-6-6

[4]
Insulin Resistance: From Mechanisms to Therapeutic Strategies.

Diabetes Metab J. 2022-1

[5]
Role of ketone bodies in diabetes-induced dementia: sirtuins, insulin resistance, synaptic plasticity, mitochondrial dysfunction, and neurotransmitter.

Nutr Rev. 2022-3-10

[6]
Rethinking Fragility Fractures in Type 2 Diabetes: The Link between Hyperinsulinaemia and Osteofragilitas.

Biomedicines. 2021-9-6

[7]
Metabolic Phenotypes and Step by Step Evolution of Type 2 Diabetes: A New Paradigm.

Biomedicines. 2021-7-9

[8]
Increased demand for NAD relative to ATP drives aerobic glycolysis.

Mol Cell. 2021-2-18

[9]
Relationships between hyperinsulinaemia, magnesium, vitamin D, thrombosis and COVID-19: rationale for clinical management.

Open Heart. 2020-9

[10]
Ketone Bodies Promote Amyloid-β Clearance in a Human in Vitro Blood-Brain Barrier Model.

Int J Mol Sci. 2020-1-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索