Suppr超能文献

先天免疫细胞固有酮体生成对于机体代谢和与年龄相关的炎症是可有可无的。

Innate immune cell-intrinsic ketogenesis is dispensable for organismal metabolism and age-related inflammation.

机构信息

Department of Physiology, University of California San Francisco, San Francisco, California, USA.

Department of Physiology, University of California San Francisco, San Francisco, California, USA.

出版信息

J Biol Chem. 2023 Mar;299(3):103005. doi: 10.1016/j.jbc.2023.103005. Epub 2023 Feb 10.

Abstract

Aging is accompanied by chronic low-grade inflammation, but the mechanisms that allow this to persist are not well understood. Ketone bodies are alternative fuels produced when glucose is limited and improve indicators of healthspan in aging mouse models. Moreover, the most abundant ketone body, β-hydroxybutyrate, inhibits the NLRP3 inflammasome in myeloid cells, a key potentiator of age-related inflammation. Given that myeloid cells express ketogenic machinery, we hypothesized this pathway may serve as a metabolic checkpoint of inflammation. To test this hypothesis, we conditionally ablated ketogenesis by disrupting expression of the terminal enzyme required for ketogenesis, 3-Hydroxy-3-Methylglutaryl-CoA Lyase (HMGCL). By deleting HMGCL in the liver, we validated the functional targeting and establish that the liver is the only organ that can produce the life-sustaining quantities of ketone bodies required for survival during fasting or ketogenic diet feeding. Conditional ablation of HMGCL in neutrophils and macrophages had modest effects on body weight and glucose tolerance in aging but worsened glucose homeostasis in myeloid cell-specific Hmgcl-deficient mice fed a high-fat diet. Our results suggest that during aging, liver-derived circulating ketone bodies might be more important for deactivating the NLRP3 inflammasome and controlling organismal metabolism.

摘要

衰老是伴随着慢性低度炎症的,但允许这种情况持续存在的机制尚不清楚。酮体是葡萄糖有限时产生的替代燃料,可改善衰老小鼠模型的健康寿命指标。此外,最丰富的酮体β-羟丁酸可抑制髓样细胞中的 NLRP3 炎性体,这是与年龄相关炎症的关键增强剂。鉴于髓样细胞表达生酮机制,我们假设该途径可能是炎症的代谢检查点。为了验证这一假设,我们通过破坏酮体生成所需的终末酶 3-羟-3-甲基戊二酰辅酶 A 裂解酶 (HMGCL) 的表达来有条件地消除酮体生成。通过在肝脏中删除 HMGCL,我们验证了功能靶向,并确定肝脏是唯一能够产生维持禁食或生酮饮食喂养期间生存所需的生命维持量酮体的器官。在衰老过程中,中性粒细胞和巨噬细胞中 HMGCL 的条件性缺失对体重和葡萄糖耐量的影响不大,但在高脂饮食喂养的骨髓细胞特异性 Hmgcl 缺陷小鼠中,葡萄糖稳态恶化。我们的结果表明,在衰老过程中,肝脏来源的循环酮体可能对于失活 NLRP3 炎性体和控制机体代谢更为重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67f6/10025153/ac9e247db468/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验