Suppr超能文献

用于修复临界尺寸骨缺损的功能化3D打印聚乳酸仿生支架

Functionalized 3D-Printed PLA Biomimetic Scaffold for Repairing Critical-Size Bone Defects.

作者信息

Liu Xiao, Gao Jianpeng, Cui Xiang, Nie Shaobo, Wu Xiaoyong, Zhang Licheng, Tang Peifu, Liu Jianheng, Li Ming

机构信息

Medical School of Chinese PLA, Beijing 100853, China.

Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China.

出版信息

Bioengineering (Basel). 2023 Aug 29;10(9):1019. doi: 10.3390/bioengineering10091019.

Abstract

The treatment of critical-size bone defects remains a complicated clinical challenge. Recently, bone tissue engineering has emerged as a potential therapeutic approach for defect repair. This study examined the biocompatibility and repair efficacy of hydroxyapatite-mineralized bionic polylactic acid (PLA) scaffolds, which were prepared through a combination of 3D printing technology, plasma modification, collagen coating, and hydroxyapatite mineralization coating techniques. Physicochemical analysis, mechanical testing, and in vitro and animal experiments were conducted to elucidate the impact of structural design and microenvironment on osteogenesis. Results indicated that the PLA scaffold exhibited a porosity of 84.1% and a pore size of 350 μm, and its macrostructure was maintained following functionalization modification. The functionalized scaffold demonstrated favorable hydrophilicity and biocompatibility and promoted cell adhesion, proliferation, and the expression of osteogenic genes such as ALP, OPN, Col-1, OCN, and RUNX2. Moreover, the scaffold was able to effectively repair critical-size bone defects in the rabbit radius, suggesting a novel strategy for the treatment of critical-size bone defects.

摘要

临界尺寸骨缺损的治疗仍然是一项复杂的临床挑战。近年来,骨组织工程已成为一种潜在的缺损修复治疗方法。本研究考察了通过3D打印技术、等离子体改性、胶原涂层和羟基磷灰石矿化涂层技术相结合制备的羟基磷灰石矿化仿生聚乳酸(PLA)支架的生物相容性和修复效果。进行了物理化学分析、力学测试以及体外和动物实验,以阐明结构设计和微环境对成骨的影响。结果表明,PLA支架的孔隙率为84.1%,孔径为350μm,功能化改性后其宏观结构得以保持。功能化支架表现出良好的亲水性和生物相容性,促进了细胞黏附、增殖以及碱性磷酸酶(ALP)、骨桥蛋白(OPN)、I型胶原(Col-1)、骨钙素(OCN)和 Runt相关转录因子2(RUNX2)等成骨基因的表达。此外,该支架能够有效修复兔桡骨的临界尺寸骨缺损,为临界尺寸骨缺损的治疗提供了一种新策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6218/10526104/ae3895e472e4/bioengineering-10-01019-g001.jpg

相似文献

1
Functionalized 3D-Printed PLA Biomimetic Scaffold for Repairing Critical-Size Bone Defects.
Bioengineering (Basel). 2023 Aug 29;10(9):1019. doi: 10.3390/bioengineering10091019.
4
Three-Dimensional-Printed Spherical Hollow Structural Scaffolds for Guiding Critical-Sized Bone Regeneration.
ACS Biomater Sci Eng. 2024 Apr 8;10(4):2581-2594. doi: 10.1021/acsbiomaterials.3c01956. Epub 2024 Mar 15.
5
Biomimetic mineralization of novel hydroxyethyl cellulose/soy protein isolate scaffolds promote bone regeneration in vitro and in vivo.
Int J Biol Macromol. 2020 Nov 1;162:1627-1641. doi: 10.1016/j.ijbiomac.2020.08.029. Epub 2020 Aug 8.
8
Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
Mater Sci Eng C Mater Biol Appl. 2019 Nov;104:109960. doi: 10.1016/j.msec.2019.109960. Epub 2019 Jul 6.
10
3D printed scaffold for repairing bone defects in apical periodontitis.
BMC Oral Health. 2022 Aug 8;22(1):327. doi: 10.1186/s12903-022-02362-4.

引用本文的文献

1
Investigation of Degradation and Biocompatibility of Indirect 3D-Printed Bile Duct Stents.
Bioengineering (Basel). 2024 Jul 19;11(7):731. doi: 10.3390/bioengineering11070731.
2
PVA Hydrogels Supplemented with PLA Mesh for Tissue Regeneration Scaffold.
Gels. 2024 May 25;10(6):364. doi: 10.3390/gels10060364.

本文引用的文献

1
Biomaterial scaffolds regulate macrophage activity to accelerate bone regeneration.
Front Bioeng Biotechnol. 2023 Feb 2;11:1140393. doi: 10.3389/fbioe.2023.1140393. eCollection 2023.
2
Plasma surface modification of electrospun polyhydroxybutyrate (PHB) nanofibers to investigate their performance in bone tissue engineering.
Int J Biol Macromol. 2023 Mar 1;230:123167. doi: 10.1016/j.ijbiomac.2023.123167. Epub 2023 Jan 6.
6
Biomimetic Ti-6Al-4V alloy/gelatin methacrylate hybrid scaffold with enhanced osteogenic and angiogenic capabilities for large bone defect restoration.
Bioact Mater. 2021 Mar 21;6(10):3437-3448. doi: 10.1016/j.bioactmat.2021.03.010. eCollection 2021 Oct.
8
Bioinspired mineralized collagen scaffolds for bone tissue engineering.
Bioact Mater. 2020 Nov 16;6(5):1491-1511. doi: 10.1016/j.bioactmat.2020.11.004. eCollection 2021 May.
9
Cryogenic 3D printing of dual-delivery scaffolds for improved bone regeneration with enhanced vascularization.
Bioact Mater. 2020 Aug 12;6(1):137-145. doi: 10.1016/j.bioactmat.2020.07.007. eCollection 2021 Jan.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验