Suppr超能文献

使用机器学习方法对阿尔茨海默病不同阶段已识别脑区进行体素提取和多类分类

Voxel Extraction and Multiclass Classification of Identified Brain Regions across Various Stages of Alzheimer's Disease Using Machine Learning Approaches.

作者信息

Shahzadi Samra, Butt Naveed Anwer, Sana Muhammad Usman, Pascual Iñaki Elío, Urbano Mercedes Briones, Díez Isabel de la Torre, Ashraf Imran

机构信息

Department of Computer Science, Faculty of Computing and Information Technology, University of Gujrat, Gujrat 50700, Pakistan.

Department of Information Technology, University of Gujrat, Gujrat 50700, Pakistan.

出版信息

Diagnostics (Basel). 2023 Sep 7;13(18):2871. doi: 10.3390/diagnostics13182871.

Abstract

This study sought to investigate how different brain regions are affected by Alzheimer's disease (AD) at various phases of the disease, using independent component analysis (ICA). The study examines six regions in the mild cognitive impairment (MCI) stage, four in the early stage of Alzheimer's disease (AD), six in the moderate stage, and six in the severe stage. The precuneus, cuneus, middle frontal gyri, calcarine cortex, superior medial frontal gyri, and superior frontal gyri were the areas impacted at all phases. A general linear model (GLM) is used to extract the voxels of the previously mentioned regions. The resting fMRI data for 18 AD patients who had advanced from MCI to stage 3 of the disease were obtained from the ADNI public source database. The subjects include eight women and ten men. The voxel dataset is used to train and test ten machine learning algorithms to categorize the MCI, mild, moderate, and severe stages of Alzheimer's disease. The accuracy, recall, precision, and F1 score were used as conventional scoring measures to evaluate the classification outcomes. AdaBoost fared better than the other algorithms and obtained a phenomenal accuracy of 98.61%, precision of 99.00%, and recall and F1 scores of 98.00% each.

摘要

本研究旨在利用独立成分分析(ICA),探究阿尔茨海默病(AD)在疾病不同阶段对不同脑区的影响。该研究考察了轻度认知障碍(MCI)阶段的六个脑区、阿尔茨海默病(AD)早期的四个脑区、中度阶段的六个脑区以及重度阶段的六个脑区。楔前叶、楔叶、额中回、距状皮质、额内侧上回和额上回是在所有阶段均受影响的区域。使用一般线性模型(GLM)来提取上述区域的体素。从ADNI公共源数据库获取了18名从MCI进展到疾病3期的AD患者的静息功能磁共振成像(fMRI)数据。受试者包括8名女性和10名男性。使用体素数据集训练和测试10种机器学习算法,以对阿尔茨海默病的MCI、轻度、中度和重度阶段进行分类。使用准确率、召回率、精确率和F1分数作为传统评分指标来评估分类结果。AdaBoost算法比其他算法表现更好,获得了惊人的98.61%的准确率、99.00%的精确率以及均为98.00%的召回率和F1分数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cf5/10527683/5dca745f8390/diagnostics-13-02871-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验