Academy of Computer Science and Software Engineering, University of Johannesburg, Gauteng, South Africa.
Department of Human Anatomy and Physiology, University of Johannesburg, Gauteng, South Africa.
Sci Rep. 2023 Jun 28;13(1):10483. doi: 10.1038/s41598-023-37569-0.
Many current statistical and machine learning methods have been used to explore Alzheimer's disease (AD) and its associated patterns that contribute to the disease. However, there has been limited success in understanding the relationship between cognitive tests, biomarker data, and patient AD category progressions. In this work, we perform exploratory data analysis of AD health record data by analyzing various learned lower dimensional manifolds to separate early-stage AD categories further. Specifically, we used Spectral embedding, Multidimensional scaling, Isomap, t-Distributed Stochastic Neighbour Embedding, Uniform Manifold Approximation and Projection, and sparse denoising autoencoder based manifolds on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. We then determine the clustering potential of the learned embeddings and then determine if category sub-groupings or sub-categories can be found. We then used a Kruskal-sWallis H test to determine the statistical significance of the discovered AD subcategories. Our results show that the existing AD categories do exhibit sub-groupings, especially in mild cognitive impairment transitions in many of the tested manifolds, showing there may be a need for further subcategories to describe AD progression.
许多现有的统计和机器学习方法已经被用于探索阿尔茨海默病(AD)及其相关模式,这些模式有助于了解该疾病。然而,对于理解认知测试、生物标志物数据与患者 AD 类别进展之间的关系,取得的成果有限。在这项工作中,我们通过分析各种学习到的低维流形,对 AD 健康记录数据进行探索性数据分析,以进一步区分早期 AD 类别。具体来说,我们在阿尔茨海默病神经影像学倡议(ADNI)数据集上使用了谱嵌入、多维缩放、等距映射、t-分布随机邻域嵌入、一致流形逼近和投影以及基于稀疏去噪自动编码器的流形。然后,我们确定学习到的嵌入的聚类潜力,然后确定是否可以找到类别分组或子类别。然后,我们使用 Kruskal-Wallis H 检验来确定发现的 AD 子类别是否具有统计学意义。我们的结果表明,现有的 AD 类别确实存在分组,尤其是在许多测试的流形中,轻度认知障碍的转变,这表明可能需要进一步的子类别来描述 AD 的进展。