Instituto Superior Técnico, Technical University of Lisbon, Torre Norte, Piso 7 Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Institute for Systems and Robotics, Lisbon, Portugal.
Nuclear Medicine, Champalimaud Clinical Center, Lisbon, Portugal.
Comput Biol Med. 2015 Mar;58:101-9. doi: 10.1016/j.compbiomed.2015.01.003. Epub 2015 Jan 12.
Early diagnosis of Alzheimer disease (AD), while still at the stage known as mild cognitive impairment (MCI), is important for the development of new treatments. However, brain degeneration in MCI evolves with time and differs from patient to patient, making early diagnosis a very challenging task. Despite these difficulties, many machine learning techniques have already been used for the diagnosis of MCI and for predicting MCI to AD conversion, but the MCI group used in previous works is usually very heterogeneous containing subjects at different stages. The goal of this paper is to investigate how the disease stage impacts on the ability of machine learning methodologies to predict conversion. After identifying the converters and estimating the time of conversion (TC) (using neuropsychological test scores), we devised 5 subgroups of MCI converters (MCI-C) based on their temporal distance to the conversion instant (0, 6, 12, 18 and 24 months before conversion). Next, we used the FDG-PET images of these subgroups and trained classifiers to distinguish between the MCI-C at different stages and stable non-converters (MCI-NC). Our results show that MCI to AD conversion can be predicted as early as 24 months prior to conversion and that the discriminative power of the machine learning methods decreases with the increasing temporal distance to the TC, as expected. These findings were consistent for all the tested classifiers. Our results also show that this decrease arises from a reduction in the information contained in the regions used for classification and by a decrease in the stability of the automatic selection procedure.
早期诊断阿尔茨海默病(AD),即使在轻度认知障碍(MCI)阶段,对于新疗法的开发也很重要。然而,MCI 中的大脑退化会随着时间的推移而演变,并且在患者之间存在差异,因此早期诊断是一项极具挑战性的任务。尽管存在这些困难,但已经有许多机器学习技术用于 MCI 的诊断和预测 MCI 向 AD 的转化,但以前的研究中使用的 MCI 组通常非常混杂,包含处于不同阶段的患者。本文的目的是研究疾病阶段如何影响机器学习方法预测转化的能力。在确定了转化者并估计了转化时间(TC)(使用神经心理学测试分数)之后,我们根据与转化瞬间的时间距离(0、6、12、18 和 24 个月)将 MCI 转化者(MCI-C)分为 5 个亚组。接下来,我们使用这些亚组的 FDG-PET 图像并训练分类器来区分不同阶段的 MCI-C 和稳定的非转化者(MCI-NC)。我们的研究结果表明,早在转化前 24 个月就可以预测 MCI 向 AD 的转化,并且随着向 TC 的时间距离的增加,机器学习方法的判别能力会降低,这是符合预期的。所有测试的分类器都得到了一致的结果。我们的研究结果还表明,这种下降源于分类所使用的区域所含信息量的减少以及自动选择过程的稳定性下降。