Stan Alexandru, Călburean Paul-Adrian, Drinkal Reka-Katalin, Harpa Marius, Elkahlout Ayman, Nicolae Viorel Constantin, Tomșa Flavius, Hadadi Laszlo, Brînzaniuc Klara, Suciu Horațiu, Mărușteri Marius
Emergency Institute for Cardiovascular Diseases and Transplantation Târgu Mureş, 540136 Târgu Mureş, Romania.
University of Medicine, Pharmacy, Science and Technology "George Emil Palade" of Târgu Mureş, 540139 Târgu Mureş, Romania.
Diagnostics (Basel). 2023 Sep 11;13(18):2907. doi: 10.3390/diagnostics13182907.
(1) Background: Although transcatheter aortic valve replacement (TAVR) significantly improves long-term outcomes of symptomatic severe aortic stenosis (AS) patients, long-term mortality rates are still high. The aim of our study was to identify potential inflammatory biomarkers with predictive capacity for post-TAVR adverse events from a wide panel of routine biomarkers by employing ML techniques. (2) Methods: All patients diagnosed with symptomatic severe AS and treated by TAVR since January 2016 in a tertiary center were included in the present study. Three separate analyses were performed: (a) using only inflammatory biomarkers, (b) using inflammatory biomarkers, age, creatinine, and left ventricular ejection fraction (LVEF), and (c) using all collected parameters. (3) Results: A total of 338 patients were included in the study, of which 56 (16.5%) patients died during follow-up. Inflammatory biomarkers assessed using ML techniques have predictive value for adverse events post-TAVR with an AUC-ROC of 0.743 and an AUC-PR of 0.329; most important variables were CRP, WBC count and Neu/Lym ratio. When adding age, creatinine and LVEF to inflammatory panel, the ML performance increased to an AUC-ROC of 0.860 and an AUC-PR of 0.574; even though LVEF was the most important predictor, inflammatory parameters retained their value. When using the entire dataset (inflammatory parameters and complete patient characteristics), the ML performance was the highest with an AUC-ROC of 0.916 and an AUC-PR of 0.676; in this setting, the CRP and Neu/Lym ratio were also among the most important predictors of events. (4) Conclusions: ML models identified the CRP, Neu/Lym ratio, WBC count and fibrinogen as important variables for adverse events post-TAVR.
(1)背景:尽管经导管主动脉瓣置换术(TAVR)显著改善了有症状的严重主动脉瓣狭窄(AS)患者的长期预后,但长期死亡率仍然很高。我们研究的目的是通过运用机器学习技术,从一系列常规生物标志物中识别出对TAVR术后不良事件具有预测能力的潜在炎症生物标志物。(2)方法:本研究纳入了自2016年1月起在一家三级中心被诊断为有症状的严重AS并接受TAVR治疗的所有患者。进行了三项独立分析:(a)仅使用炎症生物标志物;(b)使用炎症生物标志物、年龄、肌酐和左心室射血分数(LVEF);(c)使用所有收集的参数。(3)结果:该研究共纳入338例患者,其中56例(16.5%)患者在随访期间死亡。运用机器学习技术评估的炎症生物标志物对TAVR术后不良事件具有预测价值,曲线下面积(AUC-ROC)为0.743,精确率-召回率曲线下面积(AUC-PR)为0.329;最重要的变量是C反应蛋白(CRP)、白细胞计数和中性粒细胞/淋巴细胞比值。当在炎症指标中加入年龄、肌酐和LVEF时,机器学习性能提高到AUC-ROC为0.860,AUC-PR为0.574;尽管LVEF是最重要的预测指标,但炎症参数仍保留其价值。当使用整个数据集(炎症参数和完整的患者特征)时,机器学习性能最高,AUC-ROC为0.916,AUC-PR为0.676;在此情况下,CRP和中性粒细胞/淋巴细胞比值也是事件的最重要预测指标之一。(4)结论:机器学习模型确定CRP、中性粒细胞/淋巴细胞比值白细胞计数和纤维蛋白原为TAVR术后不良事件的重要变量。
Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2022-3-28
J Am Coll Cardiol. 2016-5-24
Nature. 2022-3-29
Pacing Clin Electrophysiol. 2021-12
Eur Heart J. 2022-2-12
N Engl J Med. 2020-8-31
Circ Cardiovasc Interv. 2019-1
J Am Coll Cardiol. 2016-4-3