Suppr超能文献

广义线性模型和生存模型中用于贝叶斯变量选择的自适应马尔可夫链蒙特卡罗方法

Adaptive MCMC for Bayesian Variable Selection in Generalised Linear Models and Survival Models.

作者信息

Liang Xitong, Livingstone Samuel, Griffin Jim

机构信息

Department of Statistical Science, University College London, London WC1E 6BT, UK.

出版信息

Entropy (Basel). 2023 Sep 8;25(9):1310. doi: 10.3390/e25091310.

Abstract

Developing an efficient computational scheme for high-dimensional Bayesian variable selection in generalised linear models and survival models has always been a challenging problem due to the absence of closed-form solutions to the marginal likelihood. The Reversible Jump Markov Chain Monte Carlo (RJMCMC) approach can be employed to jointly sample models and coefficients, but the effective design of the trans-dimensional jumps of RJMCMC can be challenging, making it hard to implement. Alternatively, the marginal likelihood can be derived conditional on latent variables using a data-augmentation scheme (e.g., Pólya-gamma data augmentation for logistic regression) or using other estimation methods. However, suitable data-augmentation schemes are not available for every generalised linear model and survival model, and estimating the marginal likelihood using a Laplace approximation or a correlated pseudo-marginal method can be computationally expensive. In this paper, three main contributions are presented. Firstly, we present an extended proposal (PARNI) to efficiently sample models directly from the marginal posterior distributions of generalised linear models and survival models. Secondly, in light of the recently proposed approximate Laplace approximation, we describe an efficient and accurate estimation method for marginal likelihood that involves adaptive parameters. Additionally, we describe a new method to adapt the algorithmic tuning parameters of the PARNI proposal by replacing Rao-Blackwellised estimates with the combination of a warm-start estimate and the ergodic average. We present numerous numerical results from simulated data and eight high-dimensional genetic mapping data-sets to showcase the efficiency of the novel PARNI proposal compared with the baseline add-delete-swap proposal.

摘要

由于广义线性模型和生存模型中边际似然没有封闭形式的解,因此为高维贝叶斯变量选择开发一种有效的计算方案一直是一个具有挑战性的问题。可逆跳跃马尔可夫链蒙特卡罗(RJMCMC)方法可用于联合对模型和系数进行采样,但RJMCMC跨维跳跃的有效设计可能具有挑战性,难以实现。或者,可以使用数据增强方案(例如,用于逻辑回归的波利亚 - 伽马数据增强)或其他估计方法,根据潜在变量导出边际似然。然而,并非每个广义线性模型和生存模型都有合适的数据增强方案,并且使用拉普拉斯近似或相关伪边际方法估计边际似然在计算上可能很昂贵。本文提出了三个主要贡献。首先,我们提出了一种扩展提议(PARNI),以直接从广义线性模型和生存模型的边际后验分布中有效地对模型进行采样。其次,鉴于最近提出的近似拉普拉斯近似,我们描述了一种涉及自适应参数的边际似然的高效准确估计方法。此外,我们描述了一种新方法,通过用热启动估计和遍历平均的组合替换Rao - Blackwell化估计来调整PARNI提议的算法调整参数。我们展示了来自模拟数据和八个高维遗传图谱数据集的大量数值结果,以展示与基线添加 - 删除 - 交换提议相比,新型PARNI提议的效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb20/10528396/d50e2443310f/entropy-25-01310-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验