Suppr超能文献

使用逆矩先验对生存数据进行贝叶斯变量选择

BAYESIAN VARIABLE SELECTION FOR SURVIVAL DATA USING INVERSE MOMENT PRIORS.

作者信息

Nikooienejad Amir, Wang Wenyi, Johnson Valen E

机构信息

Texas A&M University.

MD Anderson Cancer Center.

出版信息

Ann Appl Stat. 2020 Jun;14(2):809-828. doi: 10.1214/20-AOAS1325. Epub 2020 Jun 29.

Abstract

Efficient variable selection in high dimensional cancer genomic studies is critical for discovering genes associated with specific cancer types and for predicting response to treatment. Censored survival data is prevalent in such studies. In this article we introduce a Bayesian variable selection procedure that uses a mixture prior composed of a point mass at zero and an inverse moment prior in conjunction with the partial likelihood defined by the Cox proportional hazard model. The procedure is implemented in the R package BVSNLP, which supports parallel computing and uses a stochastic search method to explore the model space. Bayesian model averaging is used for prediction. The proposed algorithm provides better performance than other variable selection procedures in simulation studies, and appears to provide more consistent variable selection when applied to actual genomic datasets.

摘要

在高维癌症基因组研究中进行有效的变量选择对于发现与特定癌症类型相关的基因以及预测治疗反应至关重要。在这类研究中,删失生存数据很常见。在本文中,我们介绍了一种贝叶斯变量选择程序,该程序使用由零点处的点质量和逆矩先验组成的混合先验,并结合Cox比例风险模型定义的偏似然。该程序在R包BVSNLP中实现,它支持并行计算,并使用随机搜索方法来探索模型空间。贝叶斯模型平均用于预测。在模拟研究中,所提出的算法比其他变量选择程序具有更好的性能,并且在应用于实际基因组数据集时似乎能提供更一致的变量选择。

相似文献

7
Cancer survival prognosis with Deep Bayesian Perturbation Cox Network.基于深度贝叶斯扰动考克斯网络的癌症生存预后
Comput Biol Med. 2022 Feb;141:105012. doi: 10.1016/j.compbiomed.2021.105012. Epub 2021 Nov 2.

引用本文的文献

本文引用的文献

1
Using simulation studies to evaluate statistical methods.运用模拟研究评估统计方法。
Stat Med. 2019 May 20;38(11):2074-2102. doi: 10.1002/sim.8086. Epub 2019 Jan 16.
6
Objective Bayesian model selection for Cox regression.用于Cox回归的客观贝叶斯模型选择
Stat Med. 2016 Dec 20;35(29):5376-5390. doi: 10.1002/sim.7089. Epub 2016 Aug 31.
9
Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma.乳头状肾细胞癌的综合分子特征分析
N Engl J Med. 2016 Jan 14;374(2):135-45. doi: 10.1056/NEJMoa1505917. Epub 2015 Nov 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验