Suppr超能文献

复杂网络的多重分形性也源于几何:一种几何沙盒算法。

Multifractality of Complex Networks Is Also Due to Geometry: A Geometric Sandbox Algorithm.

作者信息

Rak Rafał, Rak Ewa

机构信息

Institute of Physics, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszów, Poland.

Institute of Mathematics, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszów, Poland.

出版信息

Entropy (Basel). 2023 Sep 11;25(9):1324. doi: 10.3390/e25091324.

Abstract

Over the past three decades, describing the reality surrounding us using the language of complex networks has become very useful and therefore popular. One of the most important features, especially of real networks, is their complexity, which often manifests itself in a fractal or even multifractal structure. As a generalization of fractal analysis, the multifractal analysis of complex networks is a useful tool for identifying and quantitatively describing the spatial hierarchy of both theoretical and numerical fractal patterns. Nowadays, there are many methods of multifractal analysis. However, all these methods take into account only the fact of connection between nodes (and eventually the weight of edges) and do not take into account the real positions (coordinates) of nodes in space. However, intuition suggests that the geometry of network nodes' position should have a significant impact on the true fractal structure. Many networks identified in nature (e.g., air connection networks, energy networks, social networks, mountain ridge networks, networks of neurones in the brain, and street networks) have their own often unique and characteristic geometry, which is not taken into account in the identification process of multifractality in commonly used methods. In this paper, we propose a multifractal network analysis method that takes into account both connections between nodes and the location coordinates of nodes (network geometry). We show the results for different geometrical variants of the same network and reveal that this method, contrary to the commonly used method, is sensitive to changes in network geometry. We also carry out tests for synthetic as well as real-world networks.

摘要

在过去三十年里,用复杂网络的语言来描述我们周围的现实变得非常有用,因此也很流行。尤其是真实网络的最重要特征之一就是其复杂性,这种复杂性常常表现为分形甚至多重分形结构。作为分形分析的一种推广,复杂网络的多重分形分析是识别和定量描述理论和数值分形模式空间层次的有用工具。如今,有许多多重分形分析方法。然而,所有这些方法都只考虑了节点之间的连接情况(最终还有边的权重),而没有考虑节点在空间中的实际位置(坐标)。然而,直觉表明网络节点位置的几何形状应该对真正的分形结构有重大影响。自然界中识别出的许多网络(例如,航空连接网络、能源网络、社交网络、山脊网络、大脑中的神经元网络以及街道网络)都有其自身通常独特且具有特征的几何形状,而常用方法在多重分形识别过程中并未考虑这一点。在本文中,我们提出了一种多重分形网络分析方法,该方法既考虑了节点之间的连接,又考虑了节点的位置坐标(网络几何形状)。我们展示了同一网络不同几何变体的结果,并揭示出与常用方法相反,该方法对网络几何形状的变化很敏感。我们还对合成网络以及真实世界网络进行了测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6858/10527770/bbe187476953/entropy-25-01324-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验