Suppr超能文献

发声的链接:全球语言网络及其与全球知名度的关联。

Links that speak: the global language network and its association with global fame.

作者信息

Ronen Shahar, Gonçalves Bruno, Hu Kevin Z, Vespignani Alessandro, Pinker Steven, Hidalgo César A

机构信息

Macro Connections, Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139;

Department of Physics, Northeastern University, Boston, MA 02115; Aix-Marseille Université, CNRS, CPT, UMR 7332, 13288 Marseille, France; Université de Toulon, CNRS, CPT, UMR 7332, 83957 La Garde, France; and.

出版信息

Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):E5616-22. doi: 10.1073/pnas.1410931111. Epub 2014 Dec 15.

Abstract

Languages vary enormously in global importance because of historical, demographic, political, and technological forces. However, beyond simple measures of population and economic power, there has been no rigorous quantitative way to define the global influence of languages. Here we use the structure of the networks connecting multilingual speakers and translated texts, as expressed in book translations, multiple language editions of Wikipedia, and Twitter, to provide a concept of language importance that goes beyond simple economic or demographic measures. We find that the structure of these three global language networks (GLNs) is centered on English as a global hub and around a handful of intermediate hub languages, which include Spanish, German, French, Russian, Portuguese, and Chinese. We validate the measure of a language's centrality in the three GLNs by showing that it exhibits a strong correlation with two independent measures of the number of famous people born in the countries associated with that language. These results suggest that the position of a language in the GLN contributes to the visibility of its speakers and the global popularity of the cultural content they produce.

摘要

由于历史、人口、政治和技术力量的影响,语言在全球的重要性差异极大。然而,除了简单的人口和经济实力衡量标准外,一直没有严格的定量方法来界定语言的全球影响力。在此,我们利用连接多语言使用者和翻译文本的网络结构,如书籍翻译、维基百科的多语言版本以及推特上所体现的,来提供一种超越简单经济或人口衡量标准的语言重要性概念。我们发现,这三个全球语言网络(GLN)的结构以英语作为全球中心枢纽,并围绕着少数几种中间枢纽语言,其中包括西班牙语、德语、法语、俄语、葡萄牙语和中文。我们通过表明语言在这三个GLN中的中心地位度量与两项独立衡量指标——即与该语言相关国家出生的名人数量——呈现出强相关性,来验证这一语言中心地位度量。这些结果表明,一种语言在GLN中的地位有助于其使用者的知名度以及他们所创作文化内容在全球的受欢迎程度。

相似文献

1
2
Russian translations for Cochrane.考科蓝系统评价协作网的俄语翻译。
Int J Risk Saf Med. 2015;27 Suppl 1:S112-3. doi: 10.3233/JRS-150713.
4
Understanding Editing Behaviors in Multilingual Wikipedia.理解多语言维基百科中的编辑行为
PLoS One. 2016 May 12;11(5):e0155305. doi: 10.1371/journal.pone.0155305. eCollection 2016.
7
Multilingual event extraction for epidemic detection.用于疫情检测的多语言事件提取
Artif Intell Med. 2015 Oct;65(2):131-43. doi: 10.1016/j.artmed.2015.06.005. Epub 2015 Jul 17.
10
IDEST: International Database of Emotional Short Texts.IDEST:国际情感短文本数据库。
PLoS One. 2022 Oct 7;17(10):e0274480. doi: 10.1371/journal.pone.0274480. eCollection 2022.

引用本文的文献

4
7
How directed is a directed network?有向网络的定向程度如何?
R Soc Open Sci. 2020 Sep 9;7(9):201138. doi: 10.1098/rsos.201138. eCollection 2020 Sep.
8
The causality of borrowing: Lexical loans in Eurasian languages.借贷的因果关系:欧亚语言中的词汇借贷。
PLoS One. 2019 Oct 30;14(10):e0223588. doi: 10.1371/journal.pone.0223588. eCollection 2019.
9
Media language preferences and mental illness stigma among Latinx adolescents.拉丁裔青少年的媒体语言偏好与精神疾病污名。
Soc Psychiatry Psychiatr Epidemiol. 2020 Jul;55(7):929-939. doi: 10.1007/s00127-019-01792-w. Epub 2019 Oct 23.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验