Suppr超能文献

一个由弱关系构成的小世界为功能脑网络中自我相似模块的全球最佳整合提供了条件。

A small world of weak ties provides optimal global integration of self-similar modules in functional brain networks.

机构信息

Levich Institute and Physics Department, City College of New York, New York, NY 10031, USA.

出版信息

Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):2825-30. doi: 10.1073/pnas.1106612109. Epub 2012 Feb 3.

Abstract

The human brain is organized in functional modules. Such an organization presents a basic conundrum: Modules ought to be sufficiently independent to guarantee functional specialization and sufficiently connected to bind multiple processors for efficient information transfer. It is commonly accepted that small-world architecture of short paths and large local clustering may solve this problem. However, there is intrinsic tension between shortcuts generating small worlds and the persistence of modularity, a global property unrelated to local clustering. Here, we present a possible solution to this puzzle. We first show that a modified percolation theory can define a set of hierarchically organized modules made of strong links in functional brain networks. These modules are "large-world" self-similar structures and, therefore, are far from being small-world. However, incorporating weaker ties to the network converts it into a small world preserving an underlying backbone of well-defined modules. Remarkably, weak ties are precisely organized as predicted by theory maximizing information transfer with minimal wiring cost. This trade-off architecture is reminiscent of the "strength of weak ties" crucial concept of social networks. Such a design suggests a natural solution to the paradox of efficient information flow in the highly modular structure of the brain.

摘要

人类大脑组织在功能模块中。这种组织提出了一个基本的难题:模块应该足够独立,以保证功能专业化,并且足够连接多个处理器,以实现有效的信息传递。人们普遍认为,短路径的小世界结构和大的局部聚类可能会解决这个问题。然而,在生成小世界的捷径和模块性的持久性之间存在内在的紧张关系,模块性是一种与局部聚类无关的全局属性。在这里,我们提出了这个难题的一个可能的解决方案。我们首先表明,修改后的渗流理论可以定义一组由功能大脑网络中的强连接组成的层次化模块。这些模块是“大的世界”自相似结构,因此,远非小世界。然而,将较弱的联系纳入网络会将其转换为一个小世界,同时保留定义明确的模块的基本骨架。值得注意的是,弱联系的组织方式与理论上预测的以最小布线成本最大化信息传输的方式完全一致。这种权衡架构让人联想到社会网络中至关重要的“弱联系的力量”这一概念。这种设计为大脑高度模块化结构中的有效信息流提供了一个自然的解决方案。

相似文献

1
A small world of weak ties provides optimal global integration of self-similar modules in functional brain networks.
Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):2825-30. doi: 10.1073/pnas.1106612109. Epub 2012 Feb 3.
2
The conundrum of functional brain networks: small-world efficiency or fractal modularity.
Front Physiol. 2012 May 7;3:123. doi: 10.3389/fphys.2012.00123. eCollection 2012.
3
Complex modular structure of large-scale brain networks.
Chaos. 2009 Jun;19(2):023119. doi: 10.1063/1.3129783.
4
Scaling in topological properties of brain networks.
Sci Rep. 2016 Apr 26;6:24926. doi: 10.1038/srep24926.
5
Fractal rules in brain networks: Signatures of self-organization.
J Theor Biol. 2018 Jan 21;437:58-66. doi: 10.1016/j.jtbi.2017.09.014. Epub 2017 Sep 18.
6
Trade-off between multiple constraints enables simultaneous formation of modules and hubs in neural systems.
PLoS Comput Biol. 2013;9(3):e1002937. doi: 10.1371/journal.pcbi.1002937. Epub 2013 Mar 7.
7
Model of brain activation predicts the neural collective influence map of the brain.
Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):3849-3854. doi: 10.1073/pnas.1620808114. Epub 2017 Mar 28.
8
Features of spatial and functional segregation and integration of the primate connectome revealed by trade-off between wiring cost and efficiency.
PLoS Comput Biol. 2017 Sep 29;13(9):e1005776. doi: 10.1371/journal.pcbi.1005776. eCollection 2017 Sep.
9
Characterization of anatomical and functional connectivity in the brain: a complex networks perspective.
Int J Psychophysiol. 2010 Sep;77(3):186-94. doi: 10.1016/j.ijpsycho.2010.06.024. Epub 2010 Jun 23.
10
Revealing modular architecture of human brain structural networks by using cortical thickness from MRI.
Cereb Cortex. 2008 Oct;18(10):2374-81. doi: 10.1093/cercor/bhn003. Epub 2008 Feb 10.

引用本文的文献

1
Uncertainty Quantification of Network Inference with Data Sufficiency.
IEEE Trans Netw Sci Eng. 2025 Sep-Oct;12(5):3600-3610. doi: 10.1109/tnse.2025.3563303. Epub 2025 Apr 22.
2
Contrast subgraphs catch patterns of altered functional connectivity in autism spectrum disorder.
Sci Rep. 2025 Jul 7;15(1):24265. doi: 10.1038/s41598-025-04932-2.
3
Symmetries and synchronization from whole-neural activity in the connectome: Integration of functional and structural networks.
Proc Natl Acad Sci U S A. 2025 Jun 10;122(23):e2417850122. doi: 10.1073/pnas.2417850122. Epub 2025 Jun 2.
4
Cortical functional connectivity and topology based on complex network graph theory analysis during acute pain stimuli.
Neurophotonics. 2025 Apr;12(2):025010. doi: 10.1117/1.NPh.12.2.025010. Epub 2025 May 14.
6
Tell me why: A scoping review on the fundamental building blocks of fMRI-based network analysis.
Neuroimage Clin. 2025;46:103785. doi: 10.1016/j.nicl.2025.103785. Epub 2025 Apr 13.
8
The multiscale self-similarity of the weighted human brain connectome.
PLoS Comput Biol. 2025 Apr 7;21(4):e1012848. doi: 10.1371/journal.pcbi.1012848. eCollection 2025 Apr.
9
Quantifying the diverse contributions of hierarchical muscle interactions to motor function.
iScience. 2024 Dec 16;28(1):111613. doi: 10.1016/j.isci.2024.111613. eCollection 2025 Jan 17.
10
Alterations of upper-extremity functional muscle networks in chronic stroke survivors.
Exp Brain Res. 2024 Dec 23;243(1):31. doi: 10.1007/s00221-024-06973-x.

本文引用的文献

1
The human Turing machine: a neural framework for mental programs.
Trends Cogn Sci. 2011 Jul;15(7):293-300. doi: 10.1016/j.tics.2011.05.007. Epub 2011 Jun 21.
2
Modular and hierarchically modular organization of brain networks.
Front Neurosci. 2010 Dec 8;4:200. doi: 10.3389/fnins.2010.00200. eCollection 2010.
3
Efficient physical embedding of topologically complex information processing networks in brains and computer circuits.
PLoS Comput Biol. 2010 Apr 22;6(4):e1000748. doi: 10.1371/journal.pcbi.1000748.
4
Small-world to fractal transition in complex networks: a renormalization group approach.
Phys Rev Lett. 2010 Jan 15;104(2):025701. doi: 10.1103/PhysRevLett.104.025701. Epub 2010 Jan 11.
5
Towards design principles for optimal transport networks.
Phys Rev Lett. 2010 Jan 8;104(1):018701. doi: 10.1103/PhysRevLett.104.018701. Epub 2010 Jan 6.
6
Modularity map of the network of human cell differentiation.
Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):5750-5. doi: 10.1073/pnas.0914748107. Epub 2010 Mar 10.
7
The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour.
Trends Cogn Sci. 2010 Apr;14(4):172-9. doi: 10.1016/j.tics.2010.01.004. Epub 2010 Feb 18.
8
Assessing the relevance of node features for network structure.
Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11433-8. doi: 10.1073/pnas.0811511106. Epub 2009 Jul 1.
9
Complex networks renormalization: flows and fixed points.
Phys Rev Lett. 2008 Oct 3;101(14):148701. doi: 10.1103/PhysRevLett.101.148701. Epub 2008 Oct 1.
10
Brain mechanisms of serial and parallel processing during dual-task performance.
J Neurosci. 2008 Jul 23;28(30):7585-98. doi: 10.1523/JNEUROSCI.0948-08.2008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验